Anteprima
Vedrai una selezione di 10 pagine su 45
Numerical Analysis Pag. 1 Numerical Analysis Pag. 2
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 6
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 11
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 16
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 21
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 26
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 31
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 36
Anteprima di 10 pagg. su 45.
Scarica il documento per vederlo tutto.
Numerical Analysis Pag. 41
1 su 45
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Appunti Numerical Analysis

The Art of Modelling

Modelling

  • Physical Model

    • a full reproduction of a thing (measure)
    • reproduction in steel
    • is a down version of reality
    • manpower difference: measure the answer
    • answer depends on materials
  • Conceptual Model

    • active before the mathematical model and after simulation
    • no numbers, no equations, only descriptive
  • Mathematical Model

    • with monitored numbers
    • to obtain security criteria
  • Animal Model

    • used in medicines fields for experimental study
    • the results can't always apply to human case
  • Data Driven Models

    • Not needing having equations, a set of some equations
    • Attractive for to treat some data and obtain a trend (indication)
  • Mechanism Driven Models

    • Logical way to describe a structure
    • starting from beam with boundary conditions to:

Chapter 3: Elements of Computational Methods

Elementary Foundations

  • Physical Problem

    Computation of a deformed structure of a biomimic

    (start from a real problem)

For a solution sketch is needed xpa

xpa = {temperature, pressure, deformation}

N.B.: no equation at all

Definitions

  • K ⊂ R
  • P ≥ set of input data
  • V ≥ set of solutions

Vector Spaces

V₁ ∪ V₂ ... up to as a VECTOR a candid element of W

In context of interest, we need to adapt contributions

Scalar Multiplication:

∀α∈K

  • (α,w)→α⋅w∈W

Vector Addition:

∀u,v∈W

  • (u,v)→u+w∈W

Example:

Given a vector W: R2

We are able to sum the two elements

We can express w as a linear combination of (e1, e2)

Properties:

  1. u+v = v+u ∀u,v∈W
  2. COMMUTATIVITY

  3. u + (v+w) = (u+v) + w ∀u,v,w∈W
  4. ASSOCIATIVITY

  5. ∃θ∈W ∀u∈W, u+θ = θ
  6. IDENTITY ELEMENT OF VECTOR ADDITION

  7. ∀u∈W ∃w∈W , u+w = θ
  8. INVERSE ELEMENT OF VECTOR ADDITION

  9. w∈W α,β∈K α(β⋅w) = (αβ)⋅w
  10. ASSOCIATIVITY OF SCALAR MULTIPLICATION

  11. 1⋅w = w ∀w∈W
  12. IDENTITY ELEMENT OF SCALAR MULTIPLICATION

  13. α(u+v) = αu+αv ∀u,v∈W ∀α∈K
  14. DISTRIBUTIVITY OF SCALAR MULTIPLICATION WITH RESPECT TO VECTOR ADDITION

  15. (α+β)w = αw+βw ∀α,β∈K ∀w∈W
  16. DISTRIBUTIVITY OF SCALAR MULTIPLICATION WITH RESPECT TO FIELD ADDITION

Example:

W:R3 : x∈R3

x = (x1, x2, x3) ↔ x ∈R3

Check other properties:

  1. 2y+4y=6yx=...✓
  2. ...
  3. x+0=x

Example: evaluation of the derivative of a function:

y ∈ C⁴ [t₀, t₀ + ]

y = y(t)

x = x(t) = y'(t)

Aim: compute the derivative at a certain point t₀.

x = x(t₀) = y'(t₀)

We can use Taylor's expansion to approximate:

y(t₀+ h) = y(t₀) + y'(t₀) h +

with point ∈ (t₀, t₀+h) but we don't know where

x = y(t₀ + h) - y(t₀) -

This formula doesn’t give us the exact evaluation of ξ because of ξ.

→ small problem has to be in the form

F(x)=0;

x - [y(t₀ + ) - y(t₀) - ]| = 0

h

We know that it admits only one solution, but we are not able to compute it.

We can assume y''(ξ) = 0

Xa=[y(t₀+)-y(t₀)]=0

Xa = [y(t₀+)-y(t₀)]

[ h ]

it's different from x, this is an APPROXIMATION

Xa = [y(t₀+)-y(t₀)]

INCREMENT RATIO

→ Having both continuous and discrete formulations associated with the same physical system, we naturally lead to inquire about the quality with which x represents (approximates) x.

We need to introduce the DISCRETIZATION ERROR

E = x - X

Note that E cannot be computed because x is, in general, not available.

This doesn't constitute a serious difficulty, because we are actually interested in the convergence of the approximate solution X to the solution x.

An aspect is that:

lim E = 0 CONVERGENCE → error becomes smaller and smaller when we discretize the approximated model

* Same problem, but use INCREMENT m :

C0 + C1 x + Cm-1 x m-1 (no real n points) (PARABOLA) → (real roots of x-interval = VERTICES) (mid points of each interval (xi) = CENTERS)

M = 2

M = 2 (LINEAR) M = 2 (PARABOLA)

2 VERTEX

2 VERTEX

3 NODI 3 NODI

M = 3: in and interval we will have a CUBIC FUNCTION, • gives direct and indirect roots and 2 increments

Theorem 2: Given I

Dettagli
Publisher
A.A. 2017-2018
45 pagine
2 download
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Ppaola_ di informazioni apprese con la frequenza delle lezioni di Numerical analysis e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Sacco Riccardo.