Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
In the following list, the actual numbers/functions might change from one exam to another.
Questions for BASIC exams
- On the triangle with vertices V1 = (0, 0), V2 = (1, 1), and V3 = (-1, 1) compute the stiffness matrix for linear finite elements approximations of Laplace operator.
- On the triangle with vertices V1 = (0, 0), V2 = (1, 1), and V3 = (-1, 1) compute the mass matrix for linear finite elements.
- On the triangle with vertices V1 = (0, 0), V2 = (1, 1), and V3 = (-1, 1), compute the analytic expression of the three basis functions φi(x, y) (i = 1, 2, 3).
- Given the function f(x) = x3 - 2x2 + x - 4, write the expression of the Lagrange interpolant of degree 2 of f with respect to the points x1 = -1, x2 = 1, x2 = 2. Prove uniqueness of such an interpolant.
- Given the function f(x) = x4 - 2x3 - 2, write the expression of the Lagrange interpolant of degree 3 of f with respect to the points x1 = -1, x2 = 0. x3 = 1, x4 = 2. Prove uniqueness of such an interpolant.
- Given the function f(x) = x3 - 2x2 + x - 4, use the composite midpoint quadrature formula in order to compute its approximate integral on the interval [-3, 3], splitting the interval in 3 subintervals.
- What is the order of precision of the following quadrature formulas?
- a) ∫-11 g(x)dx ≈ 2/3 [2g(-1/2) - g(0) + 2g(1/2)], R2:
- a) ∫-11 g(x)dx ≈ 1/4 [g(-1) + 3g(−1/3) + 3g(1/3) + g(1)]
- Compute α and x1 such that the quadrature formula
∫01 g(x)dx = αg(x1)
has maximum order of precision.
9. Given the triangle T with vertices V1 = (0,0), V2 = (1,1), and V3 = (-1,1) use the vertex integration formula to compute the approximate integral of the function f(x,y) = x2 + y2 over T. What is the order of precision of the formula?
10. Given the triangle T with vertices V1 = (-1,-1), V2 = (2,-1), and V3 = (2,2) use the barycenter integration formula to compute the approximate integral of the function f(x,y) = x2 + y2 over T. What is the order of precision of the formula?
11. Given the triangle T with vertices V1 = (-1,-1), V2 = (2,-1), and V3 = (2,2) use the “midpoint of the edges” integration formula to compute the approximate integral of the function f(x,y) = x2 + y2 over T. What is the order of precision of the formula?
12. Check that the vertex quadrature formula on triangles is exact on polynomials of degree up to 1.
13. Check that the barycenter quadrature formula on triangles is exact on polynomials of degree up to 1.
14. Check that the midpoints of the edges quadrature formula on triangles is exact on polynomials of degree up to 2.
15. After writing Crank-Nicolson scheme for initial value problems, prove A-stability. Apply the scheme to the following initial value problem
y'(t) = -2y(t) + 2t - 1 t ∈ (0,T), y(0) = -1
16. Explicit Euler scheme for initial value problems: convergence properties. Apply the scheme to the following initial value problem
y'(t) = -2y(t) + 2t - 1 t ∈ (0,T), y(0) = -1
17. Implicit Euler scheme for initial value problems: convergence properties. Apply the scheme to the following initial value problem
y'(t) = -2y(t) + 2t - 1 t ∈ (0,T), y(0) = -1
∫T φi φj dx dy = |xt| / 3 (φi φj (x1x, y1x) + φi φj (x2y, y2x) + φi φj (x3y, y3y))
dove i, j = 1, 2, 3 e xix indica la ascissa del punto medio del lato i
Se j = i
φ(xkxi, ykxi) = { 0 per k = i
_______________{ 1/2 per k ≠ i
∫T φi φj dx = |xt| / 3 [(1/2)2 + (1/2)2 + 0] = 1/6
Se j ≠ i
φ(xkxi, ykxi) = { 0 per k = j v k = i
_________________{1/2 per k ≠ i, j
∫T φi φj dx = |xt| / 3 [(1/2)2] = 1/12
MT = | 1/6 1/12 1/12 |
______| 1/12 1/6 1/12 |
______| 1/12 1/12 1/6 |
mij { xi, i / 2 i = j
_____________{ xi / 3, 1/4 η 1/3
7. Given the triangle T with vertices V1=(0,0), V2 (1,1) and V3 =(-1,1) use the vertex integration formula to compute the approximate integral of the function f(x,y) = x2 + y2 over T. What is the order of precision of the formula?
Parole chiave: Vertex Integration Formula Order of Precision
∫Σ f(xi, yi) dx dy ≈ area(Σ) / N ∑i=1N f(xi, yi)
N = no vertici ≡ 3 i=1,2,3
Essendo un triangolo N=3 e
area(Σ)= b·h / 2 = 1 / 2 · det [ x2-x1 x3-x1 ] = 1/2 · det [ 1 -1 ] = 1/2 [ 1 + 1 ] = 1 y2-y1 y3-y1 1 1
∫T f(x,y) dx dy = area(T) / 3 { f(02 + 02) + (12 + 12) + (-1)2 + 12) } =
= 1 / 3 [ 4 ] = 4 / 3
Order of precision 1
11. Explicit Euler scheme for initial value problems: convergence properties. Apply the scheme to the following initial value problem.
Y(t) = -2Y(t) + e(2·t-1), t ∈ (0, T), Y(0) = 1
Parole chiavi: Explicit Euler Convergence properties
EE: {Y(0) dato, Ym+1 = Ym + Δt f(tm, Ym) m = 0, ..., N-1
If the scheme is consistent and stable, then it is convergent and the order of convergence is equal to the order of consistency in the norm where stability holds
Dato l'errore τ si ha che |τ| < C Δtp dove C è una costante positiva, indipendente da Δt e p, e quindi τ → 0 per Δt → 0, p è l'ordine di consistenza.
Ym+1 = Ym + Δt f(tm, Ym) ⇒ \frac{Ym+1 - Ym}{Δt} - f(tm, Ym) = 0
Se applichiamo (EE) alle soluzioni esatte si commette un errore τm al passo m
\frac{Ym+1 - Y'm}{Δt} - f(tm, Y'm) ≠ 0 m = 0,1,...
l'errore τ sarà il massimo valore di τm ovvero τ = max |τm| per tm
Sviluppa il polinomio di Taylor: Y(tm+1) = Y(tm) + Δt Y'(tm) + \frac{Δt2}{2} Y''(tξm), tξm ∈ tm
Esendo f(tm, Y'm) - Y'(tm) ⇒ τ = \frac{Δt}{2} V''(tξm), tξm ∈ tm