Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
1. THE STRUCTURAL PROBLEM
- Given:
- 3D continuous body w/ volume V and surface S
- Body forces F
- Surface forces f
- Assigned displacement on the constrained surface
- We wanna define
- Displacement field
- Stress field
- Strain field
- Hypothesis
- Small strains & displacements
- Isothermal process
- No dynamics
- Linear elastic (isotropic) material behavior
- Governing equations
- Equilibrium
- \(\sigma_{ij,j} + F_i = 0 \quad \forall x \in V\)
- \(\sigma_{ij} n_j = f_i \quad \forall x \in S_f\)
- \(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + F_x = 0\)
- \(\sigma_{Mx} + \tau_{xy} M_y + \tau_{xz} M = 0\)
2
2) KINEMATIC COMPATIBILITY
\( \{ \begin{array}{ll} \varepsilon_{ij} = \frac{1}{2} (s_{ij} + s_{ji}) \ \ \ & \text{on } V \\ s \cdot = \dot{s_i} \ \ \ & \text{on } Su \end{array} \)}
3) CONSTITUTIVE LAW \(\{ \begin{array}{ll} \sigma_{ij} = d_{ijkl} \varepsilon_{kl} \ \rightarrow \ \underline{\underline{\sigma}} = \underline{\underline{d}} \ \underline{\underline{\varepsilon}} \\ \varepsilon_{ij} = c_{ijkl} \sigma_{ij} \ \rightarrow \ \underline{\underline{\varepsilon}} = \underline{\underline{c}} \ \underline{\underline{\sigma}} \end{array}\)
\(\cdot\) If the POTENTIAL ELASTIC ENERGY exists, then \(\underline{\underline{s}}\) and \(\underline{\underline{\varepsilon}}\) must be symmetric & positive definite.
\(\cdot\) In the case of an ELASTIC & ISOTROPIC material
it is possible to express \(\underline{\underline{\sigma}}\) and \(\underline{\underline{\varepsilon}}\) by
using the Lame's constants
- \(\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} \ , \ E \left[ \frac{F}{A} \right] \)
- \(\mu = G = \frac{E}{2(1+\nu)}\)
\(-1 < \nu < \frac{1}{2}\)
- \(\underline{\underline{d}} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{bmatrix} \ , \ \underline{\underline{c}} = \frac{1}{E}\begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{2(1+\nu)}{2(1+\nu)} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2(1+\nu)}{2(1+\nu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{2(1+\nu)}{2(1+\nu)} \end{bmatrix}\)
\(\ast\) Meaning of \(\nu < 0\)
- \(\rightarrow\) First 2 equations of \(\underline{\epsilon} = \underline{\underline{d}} \cdot \epsilon\)
- \(\varepsilon_x = \frac{1}{E} \{ \sigma_x - \nu(\sigma_y + \sigma_z)\}\)
- \(\varepsilon_y = \frac{1}{E} \{ \sigma_y - \nu(\sigma_x + \sigma_z)\}\)
Proof of (3):
- Internal work definition + kinematic compatibility condition
⇒ V∂j*ŷj dV
ŷj = 1/2 (sj + sj,c)⇒ t = V∂ij* 1/2 (Sj + Sj,c) dV
- due to the symmetry of ∂ij and the implicit summation we can write
⇒ ℓi = V∂ij* S̅ij dV
- Divergence theorem:
V (∂ij,jSi + ∂ijSij) dV = S ∂ijmjsi dS
⇒ ℓi = -V∂ij,jsidV + S ∂ijmjsidS
- Equilibrium condition
{∂ij,j = -fi* on V∂ijmj = fi* on Su,se
⇒ ℓi = V fi*sidV + ∂Sf f*isidS + Su,se∂ijmjs̅cdS - Le
PRINCIPLE OF VIRTUAL DISPLACEMENT (PVD)
• Let's consider a REAL STATIC SET of a REAL BODY and a VIRTUAL KINEMATIC SET.
- The VIRTUAL KIN SET must satisfy the following and:
- Si = Sii
- Si + δSi = Si
⇒ δSi = 0 on Su
Eij + δEij = 1/2 ((Sii − δSii),j + (Sij + δSjj),i)
due to linearity
⇒ |δEij = 1/2 (δSi,j + δSj,j) on V
E* set of kinematic compatible field with zero data on the boundary
Principle:
The condition δti - δte = 0 implies EQUILIBRIUM on V and St
∀ δS, δEij, δSi
- ∫v δti ∙ τij δEij dV
- ∫su δte ∙ Fi δSi ds dV
- + ∫v fi δSi dV
Proof:
δti - δte ∙ ∫v τij δEij dV - ∫su Fi δSi ds dV
•Recalling the kinematic compatibility δEij = 1/2 (δSi,j + δSj,i)
3D ELASTIC BEHAVIOR
1) ELASTIC POTENTIAL
w(ε) = ∫ δt dε
dw = δt dε → δt = dw/dε
2) COMPLEMENTARY ELASTIC POTENTIAL
wc(δ) = ∫ εt dδ
dwc = εt dδ → εt = dwc/dδ
By considering a body with volume V, we can define:
- TOTAL ELASTIC POTENTIAL Ω(ε) = ∫V w(ε) dV
In case of linear elastic behavior w = ½εt Eε
Ω(ε) = ½ ∫V εt dε Eε dV
- TOTAL COMPLEMENTARY ELASTIC POTENTIAL ΩC(δ) = ∫V wc(δ) dV
In case of linear elastic behavior ΩC(δ) = ½ ∫V δt E-1 δ dV
OSSERVAZIONE:
ε = E-1 δ → equivalent of δ = Eε in 1D
δ = dw/dε = dεt dε → d = d2w/dε2t
d is a matrix containing the 2nd derivatives of w
- Recalling the Schwartz’s theorem
∂2f(x,y)/∂y∂x = ∂2f(x,y)/∂x∂y → d = Msym
Proof
- Let consider a stress field σ* and a variation δσ* + dσ*
- σ* = ξ
- δσ* st ξ ∈ ξn
- δσ* = 0 on V
- δt* = 0 on Sf
- The VARIATION of the TCE is
- δTCE = TCE(σ* + δσ*) - TCE(σ*)
- = -½V (σ* + δσ*) ξ (σ* + δσ*) dV = ∫Su (σ* + δt*)T ξ s dS
- -½V σ*T ξ σ* dV - ∫Sc t*T ξ s dS
- = ½V στ ξ σ* dV ±12Vf στ ξ δσ* dV ±12 δσ*τ ξ σ* dV +
- + ½Vf δσ*τ ξ δσ* dV - ∫Su δξ*τ s dS ± ½2V* ξ σ* dV
- = ∫V ξ*τ ξ δσ* dV - ∫Su δξ*τ s dS + ½2V ν δσ*τ ξ δσ* dV