Calcolare
oot{3}{2 + x^3} -
oot{3}{1 + 2x^2 + x^3}[/math]
Ricordando il prodotto notevole
oot{3}{(2+x^3)^2} +
oot{3}{(2+x^3)(1 + 2x^2 + x^3)} +
oot{3}{(1 + 2x^2 + x^3)^2}[/math]
oot{3}{2 + x^3} -
oot{3}{1 + 2x^2 + x^3}) \cdot \frac{
oot{3}{(2+x^3)^2} +
oot{3}{(2+x^3)(1 + 2x^2 + x^3)} +
oot{3}{(1 + 2x^2 + x^3)^2}}{
oot{3}{(2+x^3)^2} +
oot{3}{(2+x^3)(1 + 2x^2 + x^3)} +
oot{3}{(1 + 2x^2 + x^3)^2}} =[/math]
oot{3}{[x^3(\frac{2}{x^3} + 1)]^2} +
oot{3}{x^3 (\frac{2}{x^3} + 1) x^3 (\frac{1}{x^3} + \frac{2}{x} + 1)} +
oot{3}{[x^3 (\frac{1}{x^3} + \frac{2}{x} + 1)]^2}}=[/math]
oot{3}{x^6(\frac{2}{x^3} + 1)^2} +
oot{3}{x^6 (\frac{2}{x^3} + 1) (\frac{1}{x^3} + \frac{2}{x} + 1)} +
oot{3}{x^6 (\frac{1}{x^3} + \frac{2}{x} + 1)^2}}=[/math]
oot{3}{(\frac{2}{x^3} + 1)^2} + x^2
oot{3}{(\frac{2}{x^3} + 1) (\frac{1}{x^3} + \frac{2}{x} + 1)} + x^2
oot{3}{(\frac{1}{x^3} + \frac{2}{x} + 1)^2}}[/math]
Dividendo numeratore e denominatore per
oot{3}{(\frac{2}{x^3} + 1)^2} +
oot{3}{(\frac{2}{x^3} + 1) (\frac{1}{x^3} + \frac{2}{x} + 1)} +
oot{3}{(\frac{1}{x^3} + \frac{2}{x} + 1)^2}} = \frac{-2}{1 + 1 + 1} = - \frac{2}{3}[/math]
FINE