_francesca.ricci
Ominide
2 min. di lettura
Vota

Concetti Chiave

  • La cameriera lancia un bicchiere vuoto orizzontalmente, che cade a terra a 53 cm dal bordo del tavolo.
  • L'altezza del tavolo è di 71 cm, influenzando il tempo di caduta del bicchiere.
  • La velocità iniziale del bicchiere al momento del distacco dal tavolo è calcolata come 1,4 m/s.
  • La caduta del bicchiere a terra avviene in un tempo di 0,38 secondi.
  • La traiettoria del bicchiere segue una parabola a causa della caduta libera, con velocità iniziale orizzontale.

Una cameriera distratta lancia orizzontalmente un bicchiere vuoto sul tavolo al barman perché lo riempia. Purtroppo il lancio è lungo, e il bicchiere cade a terra a una distanza orizzontale di

[math]53 cm[/math]

dal bordo del tavolo che è alto

[math]71 cm[/math]

. Calcola:

  • La velocità del bicchiere al momento del distacco dal tavolo;
  • Dopo quanto tempo il bicchiere arriva a terra;
esercizi_meccanica

Svolgimento

Calcoliamo la velocità con cui il bicchiere arriva al bordo del tavolo, un momento prima di cadere; per farlo, ricordiamo che la traiettoria descritta dal bicchiere in caduta libera è una parabola (con vertice nell'origine degli assi) , e, poiché la velocità iniziale è orizzontale, possiamo sfruttare l'equazione cartesiana della traiettoria seguita dal bicchiere:

[math] y = 1/2 \cdot frac(g)(v_0 ^2) \cdot x^2 [/math]

dove

[math]x[/math]

e

[math]y[/math]

sono le distanze (orizzontali e verticali) dal punto di partenza,

[math]g[/math]

è la costante di gravitazione, mentre

[math]v_0[/math]

è la velocità che stiamo cercando; ricaviamo quindi dall'equazione la velocità:

[math] 2 \cdot v_0 ^2 \cdot y = g \cdot x^2 \to v_0 ^2 = frac(g \cdot x^2)(2 \cdot y) [/math]

[math] v_0 = \sqrt{frac(g \cdot x^2)(2 \cdot y)} [/math]

Sostituiamo i valori numerici, trasformandoli prima nelle giuste unità di misura:

[math] x = 53 cm = 0,53 m [/math]

[math] x = 71 cm = 0,71 m [/math]

[math] v_0 = \sqrt{frac(9,8 m/s^2 \cdot (0,53 m)^2)(2 \cdot 0,71 m)} = 1,392 m/s = 1,4 m/s [/math]

Possiamo ora calcolare dopo quanto tempo il bicchiere raggiunge il suolo:

[math] s = v_0 \cdot t \to t = frac(s)(v_0) [/math]

[math] t = frac(s)(v_0) = frac(0,53 m)(1,4 m/s) = 0,38 s [/math]

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community