Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Power = _ℎ
Considerations
• During lessons we have studied CC-CV cycles
• Charge & Discharge capacities were computed as the integral of the current over time. Coulombic
efficiency is the ratio between discharge and charge capacity, it represents the charge delivered with
respect to the absorbed one.
• Coulombic efficiency reached practical values greater than 100%, because there may be a sort of memory
effect: if the previous cycle was too fast and the next one is slower, it may recover part of the charge of
the previous cycle. A different CV step may avoid this behavior because we can have side reactions that
consume current without affecting the voltage that can be completed when the transient due to the C-
rate is slower, or it can be a measuring error due to the software approximations.
• Energy was computed in three different ways, and they led to very similar results: first one is done
automatically by the EC lab software; in the second one energy is computed as integral of voltage over
time and then multiplied with the current; in the last method energy is directly obtained as integral of
voltage over charge.
• Power is obtained as the ratio between the energy delivered during discharge and the discharge time. It is
an average power.
Q charge/discharge
vs
cycle number 180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Q charge vs. cycle number Q discharge vs. cycle number #
2.800
2.790
2.780
2.770
2.760
A.h 2.750
e/m
arg 2.740
isch
d
Q 2.730
2.720
2.710
2.700
2.690
2.680 2 4 6 8 10 12 14 16
cycle n u m b e r
Graphical analysis of battery
performance 180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Q charge vs. cycle number Q discharge vs. cycle number control vs. cycle number # -600
2.800 -800
-1.000
2.790 -1.200
-1.400
2.780 -1.600
-1.800
2.770 -2.000
-2.200
2.760 -2.400
-2.600
A.h 2.750 co
e/m -2.800 n
arg t
C/5 ro
2.740 -3.000 l/m
isch 1C A
-3.200
C/3
d
Q 2.730 -3.400
C/5 -3.600
2C
2.720 -3.800
-4.000
2.710 -4.200
-4.400
2.700 -4.600
-4.800
2.690 -5.000
-5.200
2.680 -5.400
2 4 6 8 10 12 14 16
cycle n u m b e r
180924_NCR18650PF_m od5_cell1_00_02_GCPL_cnQECe.m pp
Q charge vs. cycle number Q discharge vs. cycle number #
3.000 3.000
2.800 2.800
2.600 2.600
2.400 2.400
2.200 2.200
2.000 2.000
1.800 1.800 Q
A.h d
isch
1.600 1.600
e/m arg
arg e/m
ch 1.400 1.400 A.h
Q 1.200 1.200
1.000 1.000
800 800
600 600
400 400
200 200
0 0
0 2 4 6 8 10 12 14
cycle n u m b e r _ℎ
= _ℎ
Coulombic eff
=
discharge /charge capacity *100
Graphical analysis of battery The columbic efficiency vs. cycle number plot
performance is fitted with a second order polynomial function
(Coulombic efficiency) 180924_NCR18650PF_m od5_cell1_00_02_GCPL.m pr
Efficiency vs. cycle number # Q discharge vs. cycle number Q charge vs. cycle number 3.000
100 2.800
95
90 2.600
85 2.400
100.06%
103.52% 100.96%
80 99.18% 99.79% 98.59% 99.84% 99.86% 99.97%
44.02% 99.93% 99.97% 99.84% 99.86% 99.87% 98.34% 2.200
75
70 2.000
65 1.800
60 Q
d
cy/% isch
1.600
55
icien arg
50 e/m
1.400
f
Ef A.h
45 1.200
40
35 1.000
30 800
25 600
20
15 400
10 200
5
0 0
0 2 4 6 8 10 12 14
cycle n u m b e r
Charge/Discharge @ C/5
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. time control vs. time Q charge vs. time # 4.000
4,4 3.000
4,2 2.000
4 1.000
3,8 0
3,6 -1.000
3,4 Q
SCE -2.000
3,2 ch
arg
vs. e/m
e/V 3 -3.000 A.h
Ew 2,8 -4.000
2,6 -5.000
2,4 -6.000
2,2 -7.000
2 -8.000
1,8 -9.000
1,6 235.000 240.000 245.000 250.000 255.000 260.000
t im e /s
Charge curve: C/5
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. time control vs. time Q charge vs. time # 4.000
4,4 3.500
4,3 3.000
4,2 2.500
4,1 2.000
4 1.500
3,9 Q
1.000
SCE 3,8 ch
arg
vs. 500 e/m
e/V 3,7 A.h
Ew 0
3,6 -500
3,5 -1.000
3,4 -1.500
3,3 -2.000
3,2 -2.500
3,1
3 -3.000
233.000 234.000 235.000 236.000 237.000 238.000 239.000 240.000
t im e /s
Discharge curves at different C-rates
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge
4,2
4,1
4
3,9
3,8
3,7
3,6
3,5
SCE 3,4
vs.
e/V 3,3
Ew 3,2
3,1
3
2,9
2,8
2,7
2,6
2,5 0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
The area under those curves is the practical energy, we can see from this graph that
energy assumes similar values with all the currents tested.
Discharge curves at C/5 @ warm up
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 0
4,2
4,1
4
3,9
3,8
3,7
3,6
3,5
SCE 3,4
vs.
e/V 3,3
Ew 3,2
3,1
3
2,9
2,8
2,7
2,6
2,5 0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 1
4,2
4,1
4
3,9
3,8
3,7
3,6
3,5 Discharge curves at C/5
SCE 3,4
vs.
e/V 3,3
Ew 3,2
3,1
3
2,9
2,8
2,7
2,6
2,5 0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 8
4,2
4,1
4
3,9
3,8
3,7
3,6
3,5 Discharge curves at C/3
SCE 3,4
vs.
e/V 3,3
Ew 3,2
3,1
3
2,9
2,8
2,7
2,6
2,5 0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 10
4,2
4,1
4
3,9
3,8
3,7
3,6
3,5 Discharge curves at 1C
SCE 3,4
vs.
e/V 3,3
Ew 3,2
3,1
3
2,9
2,8
2,7
2,6
2,5 0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 1 control vs. Q discharge, cycle 1 # 1.500
4,2 1.000
4,1
4 500
3,9 0
3,8 -500
3,7 -1.000
3,6
3,5 Discharge curves at C/5
-1.500
SCE co
3,4 n
vs. t
ro
-2.000 l/m
e/V 3,3 A
Ew +
-2.500
3,2 -3.000
3,1 current
3 -3.500
2,9 -4.000
2,8 -4.500
2,7 -5.000
2,6
2,5 -5.500
0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 5 control vs. Q discharge, cycle 5 # 1.500
4,2 1.000
4,1
4 500
3,9 0
3,8 -500
3,7 -1.000
3,6
3,5 Discharge curves at C/5
-1.500
SCE co
3,4 n
vs. t
ro
-2.000 l/m
e/V 3,3 A
Ew +
-2.500
3,2 -3.000
3,1 current
3 -3.500
2,9 -4.000
2,8 -4.500
2,7 -5.000
2,6
2,5 -5.500
0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 8 control vs. Q discharge, cycle 8 # 1.500
4,2 1.000
4,1
4 500
3,9 0
3,8 -500
3,7 -1.000
3,6
3,5 Discharge curves at C/3
-1.500
SCE co
3,4 n
vs. t
ro
-2.000 l/m
e/V 3,3 A
Ew +
-2.500
3,2 -3.000
3,1 current
3 -3.500
2,9 -4.000
2,8 -4.500
2,7 -5.000
2,6
2,5 -5.500
0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h
180924_NCR18650PF_m od5_cell1_00_02_GCPL_nQ.m pp
Ew e vs. Q discharge, cycle 10 control vs. Q discharge, cycle 10 # 1.500
4,2 1.000
4,1
4 500
3,9 0
3,8 -500
3,7 -1.000
3,6
3,5 Discharge curves at C
-1.500
SCE co
3,4 n
vs. t
ro
-2.000 l/m
e/V 3,3 A
Ew +
-2.500
3,2 -3.000
3,1 current
3 -3.500
2,9 -4.000
2,8 -4.500
2,7 -5.000
2,6
2,5 -5.500
0 500 1.000 1.500 2.000 2.500
Q d is ch ar g e /m A.h = න = × න
ℎ ℎ
Practical Energy
=
integral of Voltage in dQ over the discharge curve
Energy charge /discharge vs cycle number
180924_NCR18650PF_m od5_cell1_00_02_GCPL_cnQECe.m pp
Energy charge vs. cycle number Energy discharge vs. cycle number #
10,66 -9,4
10,64 -9,45
10,62 -9,5
10,6 -9,55
10,58 -9,6
10,56 -9,65
10,54 -9,7
10,52 En
e/W.h erg
-9,75 y
10,5
arg d
isch
ch -9,8
10,48 arg
y
erg e/W.h
-9,85
En 10,46 -9,9
10,44 -9,95
10,42
10,4 -10
10,38 -10,05
10,36 -10,1
10,34 -10,15
10,32 -10,2
0 2 4 6 8 10 12 14
cycle n u m b e r *Practical energy
Integral of the curve
@C/5
@C/3
= _ℎ
Avg power
=
energy divided time of the discharge cycle
Ragone plot @
( different C-rate )
180924_NCR18650PF_m od5_cell1_00_02_GCPL.m pr
Energy discharge vs. P
210
200
190
180
170
160
150
140
130
/kg
e/W.h 120
arg 110
isch 100
d
y
erg 90
En 80
70
60
50
40
30
20
10
0 0 50 100 150 200 250 300 350 400 450
P/W/k g
Ragone plot
180924_NCR18650PF_m od5_cell1_00_02_GCPL.m pr 5 h
Energy discharge vs. P
P, cycle 0
11 3 h
210
210 1 h
200
200 0,5 h
190
190
180
180
170
170
160
160
150
150
140
140
130
130
/kg
e/W.h 120
120
arg 110
110
isch 100
100
d
y
erg 90
90
En 80
80
70
70
60
60
50
50
40
40 This Ragone plot is limited in current, it is hence restricted to the
30
30 horizontal region with high energy, whereas the shoulder is not present.
20
20
10
10
0
0 0 400 450
0 50 100 150 200 250 300 350 400 450
P/W/k g
The Ragone plot we obtained is similar to the
expected result shown on the right.
Specific energy is indeed around 10^2 in its
horizontal part.
Specific power is between 30 and 400,
therefore, as previously said, the shoulder is
probably outside this interval.
Maximum current we tested is 2C, which