vuoi
o PayPal
tutte le volte che vuoi
D+
PaDu pbDU el
wap, we
+ Exe 32103
-0.02x 0.02.3
PaDV 3 e
1 887.486
= =
x 1
= Exe-002x+ 52103 -0.02.5
E, Trxne-gin
PbDUB 3 e =
=
=
2414.1636
=
PcDU 4635.5085
=
pdDU 9175. 1622
= 191.7096
3301.64962,
2
es inversa
matrice 2x2
aw (2)
UCIS=-e- d
1
=
1
2
e x b
A A +
=
= = -
Dett C
C
-
if 1.05
=
, exx DEX
=
/2x x
e 2
1.1 V v - -
- = = zx
4 a
1.2 -
-
PEX X
x-2xp2
V
Det 2
=
2x(1 32
-
=
(a) ptf diversificato
stime
x 10.5
t C per =
rendiwer]
u(.) exP,
V 105
(e-
= pg.
* f1)
r
-
* -0.150/2x
DEx 0.85 0.05x
I
x
-
2xx- =
=
= 0.058/2x
p12
0.15
p zx 4x(1 0.15a
a
- -
- +
-
=10.05x-0.150/2x][4x(1 125 impongs entrambe
de
->
- - pifdiv)
0.05812x
2 0.159354x21 23 (0,1)
le we
- -
+
senzel=" =
E 30.05x-0.150/2x][4x(1- -
125
0- 1 I
-
-0.05012x
[ 0.159][4 pi))
0 x21- 2
+
= = -
30.05x-0.150/2x][4x(1- - -0.05p(2x
[ 0.15a][4 57))
125 0
-
10 1 x21
2 -
+
=
10.05x 0.15p(x) 0.3-0.05952x21
0 =
- 1
=
0 32)
4x(1
4x(1 p2) -
- 0.3-8.058/2x 482
4
0 = -
=
-0.1512x24
0.05x 42
0 X
-
= 0.3-0.050/2x>0
·
0.05x-0.15p/2x 0
>
· 0.050/2x 0.3
=
0.055x 0.1595230
- 0.32
0.3
5x = x
5x2,0.15852 =
0.0585210.858122
3528
=
0.85 0.5
4
= 72
1
x
x,1802 = 0.858/2x 14 482
0.3 0
=
x
. -
- -
+
0.158/2x 402
x(4
0.05x- 20
· -
- [...]
5x(4
0.15152 482
0.055x 0
- -
- =
avoia
0.15852
4825x
(0.05 4
- + =
0.150/2
5x2, 0.85 4p20
4
- +
0.15222
x =
in
2005
E x 4.5
=>> * 4.5
=>
, 0.001293
*
(b) otims
3, ptf
x = 125-
x= -0.150/2x][4x(1- 0.003746
10.05x
0.5:
20p = -
· =
1
2 0.15a354x21 11 -
0.0502x 0.02653
- -
+
W* 0.0371
-0.5
rep =
· = 0.0401
varianza
Differenziale
(2) di
3e 10.5
x = =
p
sifen?
3
es 1.01
rf = 1
0.83
1.02 0.16 - 6.63-1.184
0.04 0.552
V
V
e =
= = -
0.22 0.04
0.04 4.851
1.86 0.574
1.104
- -
0.28
0.04
1.09 0.5743.713
0.552
0.83 - -
Bl C
A wP
frontiera: hETP]
al +
g
= B
meet
A met
B
meet A
met
e) e) 1)
2) A(V
h
A(v c(v
B(V -
- - -
g =
- -
= D D
'e
A DV - 11.2517
matD.matc. A
mat =
= = A)t.
eTV e
B met 11.8135
(mat c. A
= mat
= =
DS
1
1Tv
C 10.7293
(met
(metD) met c. =
= =
A2
BC
D 0.1498
=
= - =
=
R x,1)
2 (!)
= D 4.9723 vie:
D) 4.988
mat C.
v-1= mat A
(mat
matc. =
=
3.1712 3.388
2.5856 2.874
B A
e
e n
g 16.1531
= =
- 4.5002
11.6551 16.1531
i!+- ETIP]
wi 4.5002
=
=> 11.6551
-11.9816 A
meet
000
b) tangente
port, met 2 met
rf2)/2
I =
1(e rf1) e-
e-
- - v
v - 0.8798
-
we = => -
(e-rf1)
V 0.4469
I - =
(metD A)
A
met met
metc. c. mat 0.6329
- 0.25
VarIFPS
pAf
(C) con = 12
5(ETEP) t
32SP1 = - +
⑧
- I]"
[SFP)
⑧ 1
ETEPS 1.09548
- +
=> = F
10.09625 7 wP 16.1531
1,43!+- 0.2923
=> -
= 4.50021.09548 0.3062
=
11.6551
-11.9816 0.7863
frontiera?
wo=
(d) di
é
3
3
3 3.1.06 3.
43.1.02
d3 1.09 1.0567
ET e frontiera
vede su
se
+ =
+ -
= i
16.1531
+ 0.0516
- -
d3
. Et
4.5002 0.2889 I
- = 0.4892
11.6551
D
C wol?
varianza ce
tra
la
cambia
come wel metB A
(rd) wd met 0.09778
v
var matA
=
= =
var(*) DY metB
WC
NCTV 0.07111
metD
mat
= = =
(F%) var(rd) 0.02667
var - =
ETFe]
(e) 1.05
= differente)
Mup (tha
del
var senzen rf
e
con
uf
senza
· We ETe]
16.1531
!+
= 0.4423
- =
4.5002 0.3013
11.6551
-11.9816 0.2563
B
A C
D
(E) metc
we'V 0.1414
matD mat c
var We= =
=
con f
· 141
(con
ptf rf) pg
FP
ver rf1
(ETFP) -
(re)= 0.0533
ver =
H 2H B-2Arf (r=2 0.03
=
=
var(e,) -var(rei) 0.0881
Ivar= =
es4 3 2 2 = 1 2
4
Il
D 3
- -
D 5
↳ 9
↳ =
= 4
13 4
5
- 2.85
2 -
I 3 6 I 7
- X
D
arbitraggio?
(a) to $
x
arbitr DTm mco
soluzione
ammette
I s q=
=> q0
(D) -
m = 3 bix
P
6
-4
11 -
I 2.85
m =
= 4 5
-
13 I
-2 47
- 13
-
met
C 0.19
0.17
co 0.77
1. -
I >O 0.2768(13)
<
* 0 (2.483;3,59841
0.1731.113) ->
x
* - d
>8 0.1911(13)
x a
13 A
2.95 arbitraggio
(b) per x = implicito
rendimento of prices
lettore state
,bx (i)
a
(D) -
m = =
=
R3<0
m =
=> ms
io 0.9498 1.0529
if me = r f
- =
= =
⑳mice?
(4,5,2)
(x 2.95c
= =
DNC
vale:
c = 6.5
c
w D -
=
=> = 0.3846
-
es5 ,
rischiosi
2
N. -
1.02 0.18 0.02 0.05
rf =
rin I
ETFm) 1.15 0.03
0.02 0.1
=
+ = 0.03 0.88
0.05
ICAPM]
10.6,0.4)
WP = ↑ 0.4.0.1
0.62.0.18
(PP) 0.0904
(a) ver +2.0.02.0.6.0.4
= =
+
FM)
COVCF,
Bim 0.03
0.05 0.62592m
(b) 0.375
= = =
= = 0.08
S"(EM) 0.08
(C) EtEn]-rf
il rischio:
premio per Bim(E[m]
ET] rf) 0.625(1.15-1.02) 0.08125
-rf= = =
-
-
premis per
rischio
il
titolo I
Ett) 0.375(1.15-1.02) 0.04875
Vf =
=
- 0.4(ETR)
ETEP] (ETY) rf) 0.06825
rf)
0.6.
-rf -
+
-
= =
es6 P(Xk) Fx(k)
=
e
E 0.03
con p 1
= ⑧
-
I 0.02
= p =
0.95
p 0.85
= ⑧ O
-
0.03- ⑧ O i
I
4 ↳K
VERO.05, E50.05
a) . -2
-18
I I min 0.03
e
↳0 p
I =
0.02
p =
0.95
p =
vaR0.05)
([< 0.05
P =
veR0.05, VerR0.83)
P(I)
Y,
P( 0.03
= =
- -
VerR0.85)
) 0.03
F5 =
-
=> VerR0.83=-2
-
=> VerR0.85=
2
vaR"
I
ESP= du
· EvaRi 0.03 (VaR0.83 +VaR0.03]
jos 1863
Esos 240
= = =
=
Eg0.05 Yb
Vapors Y
I+
(b) iid
per
e =
E 0.03
con p =
I 0.02
= p =
0.95
p = 4
0.832 9.18
18-10
E -
p =
=
- 1.2.18-3
210.03110.82)
10-2 =
p
- =
b 2(0.03)(0.95)
1 0.057
10 p
- + = =
= 4
-2 2 0.822 4.18 -
p
- =
= 0.038
2(0.02710.95)
- p =
=
0.952 0.9025
p = = P(Ypsk) Fy(k)
=
1
4 ⑧
-
I 9.10 -
-20mIn p = 8.8973- ⑧ I
3
1.2.10
amminente -
p
b = 0.8595- ⑧ I
=> 0.057
I p = 0.8391
0.85 ⑧ I
-
4
4.18 - X
p 1.18-3-
= 2. I
⑧
0.038
p 4
= 9.10 - 0
⑧
-
0.9823
p = I
is I
-i
-20 a >I
2
-I
-
Ver0.051
Fy) 0.03
=
-
-Ver0.83=-9 VerR0.05=9
=>
0
Eg0.83 20)
(9 820
12
=
· =
+
+
06/23
1
es -10k cedola p(0, T
T V. H.
"2 99.6
ZCB 108 2(sem.)
I 103.5
CB 188 98.8
2 ann
100
CB 3 56
58 ↳ ann
CB bootstrapping? ,)
tassi composte
(cap
curve con i
(1+
=
2
-
i)0,x))
100(1
99.6 = +
0.808
i(0,42) =
· 2 1
ic0,11)
-
103.3 -
2(1 i(0,")) 102(1
+
= + +
2 1
I =0.005V
S -
-
3
i(0,1) -2(1 8-10
183.5 -
=
· +
102 2
1 i(0,2))
1(1 i(0,1))
98.8 1011
- -
= +
+ + 2
1 -
[
i(0,2) I V
98.8 -
i20,1)
(1 0.0162
· -
= =
-1
+
101 3
+ 2 -
-
4(1 10,21
i(0,1 10,3))
54(1
4(1 -
56 +
= + +
+ 0.0390X
3
- 2 -
L (4(1 I
i10,21)
10,1 4(1+ -
i10,3) 56 +
+
· - 1
= =
-
54 intermedi!!
tassi
per
i (0,2.25)
· W
0.25.0.039
i(0,1.25) 0.022
0.75.0.0162
8.839- =
= +
ais NO!
0.8162 =
2 giucts
es tults
+
rf 1.015
= 1.02 0.02 0.04
0.12
- - 0.03
0,18
1.85 0.02
4, V
2
1
re, =
=
+ 1.08 0.830.24
0.04
-ur D
e ax
-
u(x) 1
x
= =
- 0.3)
a) (a
otimo
ptf = mat
v (+1) ametD)
-
x 1 0.2416
-
= = W
-
= 0.5288
A 0.8769
b) B
ptf tang
1(e rf1) =
mat mat
- A)
(metC
v metD-
-
we A
=(metD) 0.2075
= -
e-rf1 0.4542
-
I 8.7532
~
IV
(2) 0.31
dieng,
oximo a
ptf =
10.1390 ~
0.6481
x = 0.9330
C VW
w
(W) 0.2735
var = =
wTVw
var(N) 0.2477
= = v
(4)
1 0.0258
(W)
ver
var
= - =
da
3 correggere
es +
I
re 1.02 0.02 0.04
0.12 0.03
0,18
1.85 0.02
V
2 =
= 1.08 0.83
0.04 0.24
Al D
=
(a) FP: hE[]
g
w +
Bl Al
met
met e) e), 2)
2) A(v
h
A(v c(v
B(V -
- - -
g =
-
= D
Bl
met
R- 'e D-mat
A matB. A 14.2038
mat
= =