Anteprima
Vedrai una selezione di 4 pagine su 13
Stability Takehome Pag. 1 Stability Takehome Pag. 2
Anteprima di 4 pagg. su 13.
Scarica il documento per vederlo tutto.
Stability Takehome Pag. 6
Anteprima di 4 pagg. su 13.
Scarica il documento per vederlo tutto.
Stability Takehome Pag. 11
1 su 13
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Stability of Structures

Problem S1

For the beam depicted below, the student must evaluate the critical load and the associated critical mode shape by adopting two cubic finite elements; discuss the results depending upon the parameter β.

Problem S2

Evaluate the critical load of the internally continuous frame below by means of:

  • (a) Newmark's formula;
  • (b) One finite element on the right column;
  • (c) Two finite elements on the right column.

Problem S3

A column with section in the figure has flexural-torsional clamped conditions at each edge. Evaluate its critical load as a function of the length.

Data (N, mm): h = 150, b = 150, tf = tw = 10, E = 2.0E+5, G = 8.0E+4, σn = 240

PROBLEM S4

The following finite elements and degrees of freedom were proposed for the solution of the problem:

The degrees of freedom of each element are represented by the vector:

qe = {qe1 qe2 qe3 qe4}T

For the problem, the incidence vectors that connect the global and local degrees of freedom will be:

N1 = [0 0 1 2]

N2 = [1 2 0 0]

We recall the shape functions:

N1 = 1 - 3ξ2 + 2ξ3

N2 = ξ - 2ξ2 + ξ3

N3 = 3ξ2 - 2ξ3      where   ξ = x/L

N4 = -ξ2 + ξ3

The local displacement model can be written as:

Ye(x) = N1(x)qe1 + N2(x)qe2 + N3(x)qe3 + N4(x)qe4 = N(ξ)Tqe

The total potential energy is described by the following expression:

Ve,p(qe) = 1/2 ∫0L E I v'2 dx - ∫0L pe v dx

= 1/2 qT e (Ke = Ne Kea) qe

Considering the previous shape functions we have:

KE = EI/L3 symmetric

  • 12      6Le -12      6Le
  • 4Le2 -6Le      2Le2
  •     12 -6Le symme
  •     4Le2

Kea= ⅓/30Le

  • 36     3Le -36     3Le
  • 4Le2 -3Le Le2
  • 36 -3Le
  • 4Le2

PROBLEM S2

Evaluate the critical load of the internally continuous frame below by means of:

  1. Newmark's formula
  2. One finite element on the right column
  3. Two finite elements on the right column

a) The solution of a simply supported beam with elastical constants (springs) at the opposite extremities is generally given by the Newmark's formulation:

PE = cπ2EI/L

where c =

In this problem we have: kc = EI/l.

While k2 is computed by the displacement approach on the frame. So we distinguish two situations:

  1. u2 = 1 and u2 = 0

    K11 = 4(2EI)/l + 8EI/l = 12EI/l

    K21 = 2EI/l

  2. u2 = 0 and u2 = 1

    K22 = 4EI/e

    K12 = 2EI/e

Taking into account that is present a moment in node c due to rotational spring, we are able to build the system:

[

[K11 K12] [u1] [0]

[K21 K22] [u2] = [MC]

] + [

[12EI/e 2EI/e] [u1] = [0]

[2EI/e 4EI/e] [u2] = [MC]

]

PROBLEM S3

h=150 mmb=150 mmtf, tw=10 mmE=2.105 MPaG=8.104 MPaQ0=240 N/mm

We compute some geometrical parameters in order to determine the centroid. Taking into account the symmetry of the section, the following initial reference system was proposed:

We compute the area:A=10(150+150)=3000 mm2

The moment of inertia:SxG=0 - due to symmetrySyG=150.10-(150/2)=-112500 mm3

The center of gravity:xG=SyG/A=-37,5 mmyG=0

The moment of inertia:Ix=hb3/12=10(150/3)2 2181.106 mm4Iy=tfb3/12+b(37,5)2+th(37,5-b/2)2=7,03.106 mm4 with xCFT=-37,5 mm

The center of shear is computed by using the symmetry so:xC=-37,5 mmyC=0

while the torsional inertia:J=t3/3(bh)=400000=1.105 mm4

so:IG=Ix+Iy=1045.106 mm4IC=IG+A.dCG22=141,77.106 mm4

and the interaction factor is given by:k=IC/IG=1,43

Dettagli
Publisher
A.A. 2021-2022
13 pagine
SSD Ingegneria civile e Architettura ICAR/08 Scienza delle costruzioni

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher MIKE0201 di informazioni apprese con la frequenza delle lezioni di theory of structures e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Capsoni Antonio.