Stability of Structures
Problem S1
For the beam depicted below, the student must evaluate the critical load and the associated critical mode by adopting two cubic finite elements; discuss the results as a function of the parameter β.
Problem S2
Determine the critical load and critical mode of the following 2 d.o.f. system as a function of a ratio between stiffness of extensional (k) and rotational springs (K); discuss the results.
Problem S3
The column with section in the figure has flexural-torsional clamped conditions at each edge. Evaluate its critical load as a function of the length for the flange dimensions indicated below. Compare the elastic results with the maximum compressive stress σo.
Data: B = 400, H = 200, tf = tw = 20, E = 2.0E+5, G = 8.0E+4, σo = 400 (dim N, mm)
Problem 5.1
Problem has 2 d.o.f.
When we use cubic polynomial, we could express elastic and geometric stiffness matrices:
- elastic stiffness matrix
ET/L3
[12 6L -12 6L6L 4L2 -6L 2L2-12 -6L 12 -6L6L 2L2 -6L 4L2]
- geometric stiffness matrix
1/30L
[36 3L -36 3L42L2 -3L 2L236 -3L 4L2]
d.o.f. of a single element: (we're neglecting axial deform.)
to assemble we could use a connectivity table; and so, our global St.matrix is the following:
K=[K33 + K43 K34 + K12]
[K43 + K21 K44 + K22]
to compute it we need to define st.matrices for each element in our problem.
element 1:
FEM 1
KE = βET/8L3
[12 12L -12 12L16L -12L 8L212 -12L{6L2}]
KG=1/60L
[36 6L -36 6L{6L2} -6L 4L236 -6L {6L2}]
element 2:
FEM 2
KE = ET/L3
[12 6L -12 6L4L2 -6L 2L212 -6L 4L2]
KG=1/30L
[36 3L -36 3L42L2 -3L 2L236 -3L 4L2]
Problem S2
Deformed shape:
Relative rotations:
- Lθ₂ = Lθ₁ + 1/2θ₃
- θ₂₃ = θ₂ + θ₃ = 3θ₂, 2θ₁ = θ₂₃
- θ₃ = 2(θ₂ - θ₁)
- θ₃₁ = 1 - θ₁ - θ₃ = -θ₁ - 2θ₂ = -3θ₁ - 2θ₁ = θ₃ = 1
cos θ ≈ 1 - θ²/2!
Δ = L[θ₃²/2 + θ₂²/2 + θ₁²/2]
II⁰ order TPE:
V₂(θ) = 1/2 K [θ₂₃ + 1/2 K (Lθ₂)² - P/2 (Lθ₁² + Lθ₂² + L²θ₁²/2)]
→ 1/2 K [9θ₂² - 12θ₂θ₁ + 4θ₁²)] + 1/2 K L² θ₂² - PL/2 [3θ₁² + 3θ₂² - 4θ₂θ₁]
Define:
- B = κL²/K
- ρ = PL/k
V₂ = 1/2 K [B•θ₂ + (9θ₂² - 12θ₂θ₁ + 4θ₁²) - ρ(3θ₁², 3θ₂² - 4θ₂θ₁)]
→ V₂ = K/2 [θ₂(8θ₄ - 3ρ) + θ₂² (9 - 3ρ) - θ₂ θ₄(12 - 4ρ)]
V₂(θ) = 1/2 K [θ₄ + θ₂] ⋅ [B+4 - 3ρ -6+2ρ, -6+2ρ, 9 - 3ρ] [θ₄, θ₂]
to find critical load we enforce condition det(K) = 0
Critical load as a function of the length
Px (kN) Py (kN) Pδ (kN) P∗ (kN)
L (m) Px (kN) Py (kN) Pδ (kN) P∗ (kN) Pc (kN) σ (MPa) Condition 0.100 6.14E+07 3.42E+07 3.95E+06 3.30E+05 3.30E+06 1.65E+05 Unstable 0.500 2.70E+05 1.80E+05 1.45E+05 1.32E+05 1.32E+06 6.66E+04 Unstable 1.000 8.25E+04 5.25E+04 3.73E+04 2.65E+04 5.37E+05 2.69E+04 Unstable 1.500 2.99E+04 1.52E+04 1.07E+04 5.19E+03 2.08E+05 1.04E+04 Unstable 2.000 1.68E+04 9.42E+03 5.32E+03 5.42E+03 1.18E+05 5.90E+03 Unstable 2.100 1.53E+05 7.76E+04 9.61E+03 8.71E+03 8.71E+03 4.35E+02 Unstable 2.200 1.39E+05 7.01E+04 8.89E+03 8.04E+03 8.04E+03 4.07E+02 Unstable 2.205 1.39E+05 7.04E+04 8.85E+03 8.01E+03 8.01E+03 4.00E+02 Unstable 2.210 1.38E+05 7.01E+04 8.82E+03 8.00E+03 8.01E+03 3.99E+02 Stable 2.250 1.33E+05 5.76E+04 8.55E+03 7.14E+03 7.14E+03 3.87E+02 Stable 3.000 1.08E+05 3.86E+04 5.46E+03 4.87E+03 2.92E+03 4.46E+02 Stable 4.000 5.94E+04 1.87E+04 2.34E+03 2.14E+03 1.13E+03 2.15E+02 Stable 5.000 2.70E+04 1.37E+04 2.97E+03 2.47E+03 7.82E+02 1.62E+02 Stable 6.000 1.87E+04 1.13E+04 1.94E+03 1.59E+03 4.84E+02 1.21E+02 Stable 7.000 1.45E+04 9.58E+03 2.28E+03 2.07E+03 2.72E+02 1.01E+02 Stable 8.000 1.05E+04 4.33E+03 2.26E+03 1.98E+03 2.32E+02 1.06E+02 Stable 9.000 8.32E+03 4.36E+03 1.69E+03 1.51E+03 1.58E+02 8.73E+01 Stable 10.000 6.74E+03 3.67E+03 1.43E+03 1.31E+03 1.31E+02 7.38E+01 Stable 11.000 5.57E+03 3.28E+03 1.23E+03 1.13E+03 1.13E+02 6.60E+01 Stable 12.000 4.63E+03 2.83E+03 1.10E+03 1.06E+03 1.00E+02 6.01E+01 Stable 13.000 3.94E+03 2.57E+03 9.60E+02 8.60E+02 8.60E+01 5.60E+01 Stable 14.000 2.98E+03 2.18E+03 9.28E+02 6.95E+02 6.95E+01 4.91E+01 Stable 15.000 2.94E+03 1.89E+03 7.29E+02 6.33E+02 6.33E+01 4.44E+01 Stable 16.000 2.63E+03 1.43E+03 7.66E+02 6.02E+02 6.02E+01 3.82E+01 Stable 17.000 2.29E+03 1.33E+03 6.92E+02 4.69E+02 4.69E+01 3.68E+01 Stable 18.000 2.08E+03 1.06E+03 5.84E+02 4.82E+02 4.82E+01 3.34E+01 Stable 19.000 1.82E+03 9.60E+02 2.84E+02 3.98E+02 3.98E+01 3.21E+01 Stable 20.000 1.68E+03 8.56E+02 1.55E+03 5.76E+02 2.62E+02 3.03E+02 Stable 21.000 1.47E+03 7.00E+02 5.84E+02 4.57E+02 9.82E+01 2.94E+01 Stable 22.000 1.39E+03 5.35E+02 2.46E+03 4.46E+02 1.00E+02 2.57E+01 Stable 23.000 1.27E+03 5.06E+02 1.55E+03 4.79E+02 2.50E+02 3.45E+01 Stable 24.000 1.17E+03 5.94E+02 1.54E+03 4.45E+02 2.48E+02 2.22E+02 Stable 25.000 1.08E+03 5.47E+02 1.53E+03 4.18E+02 1.99E+02 2.09E+01 Stable-
Takehome Stability of structures
-
Stability 21.06.18
-
Stability of Structures
-
Stability of Structures - Appunti