vuoi
o PayPal
tutte le volte che vuoi
3D
R = 2m β = 4m b = 1,6m ur = 60 m/s
ΘS = 60°
prato ho cd = 1,4 ⋅ ΘS ρstd = ρo Ψ = 360°/Θ
- D' σ std turbolibre = CF1 2Rbθβρu = 17 N
Re = 1,066 ⋅ 106
CF1 = 1,00074/√Re = 0,00829
- W_rel specchio
ws = σ/sub>z/dθ = σ/sub>υ/dθ = 7,473 ⋅ 10-5
6(x - 1) = 5 - x = 0,3263
- Δ'p nelle zone a barra
cpos: 1 - 4σ = 95% = 2
- Dire zone a barra = $Barra - Zona cbe‘ zone = 2
3 = 530N
- Velocita con Bernoulli il valore di velocità in P serv
ptabl + h + v - Ptab = g: 0 Q = v = ρs = o
cσ = c - ρs = v - h2
4y 29/30 = 66,53 m2
21/02/23 400 Epic
Profilo numerico C = 0.3 m L = 1.2 m V = 60 m/s Re = 753378 a_s = 15 BL: TURB Blasius
- z/c 2.0 Xr/c>x>1 Cf = 0.0375 Re-1/5 = 0.005
- Casi α=5° For CL=1: q_cl'[hlc]2 - 0.4 q_lclc + 0.5 cize: teoria profili neutri - z/c > 0.5
13/03/23 58 4208
Profilo simul. C=1.2 m c=0.2 Lind 40: e=44 m/s n=74631
Ap[1/2]= 2ρv0[1-ξ/c]= Appross. con bordo pieno
Ht' = 2ρv0∫p n ξ/c ds = ∫p.pro n m×ds = ΔP1I1 cos α = 2ρv0 cos α ∫ 1- ξ/c dz = 2ρv0 cos α [z-T2/2c 0]=
2ρv0 cos α c/2 = 1306 N/m
- z/c 2.0: L1 = 1306 = CL×aL aLind 1.2.0.2.1
- M 1T E= 1L SDR CAM NCO
Mldet = 9cm Ey y 9λο Cc xii 575.6 N
(f - ξ/c e) [ΔP ds] = [1 + ξ dp/di] = {[ξ/c 0] = [c-ξ2/2 0] f ∫ 0 c = c/ξp ∫ 0 e/c x/c
M.sub = 9ζ0 C/2 =[: 1140,1 X/]
ES. 5/M 20 p 90
φ = 32500 Re
μ = 250 m/s
y = 6 mm
l = 25 m
σst = 735
leakrat = 3/4
m = 8.2 · 10-3 kg
CD106 = 0.0285
CDforebody = 0.03
Cf = 0.075 Re
1) Dg leakrat =? Cf = 0.005847 • 0.6 • 2502 • 24 52 • 48.75 · 103
= 0.7311
Re = μ l/3/4c = 3215000 turbolento
Cf = 0.005847
2) CD8 =?
CDb = 0.0270
CDx = 0.005847
CD∞ 0.25 cd bf
CDtot = Cf + CD + CDb = cd = CD∞ + CDf
D = Cd • ρ • y∞ • S = 0.253
Dtot = ψ_OC CD106 r2₀ = 0.318 N
Dtgas = ȳ ∞ r2 • CDf = 0.253 N
Dbase = Dtot + D06 - Dfgc. = 0.338 N
Dsure = -Cpbase Q∞ r∞ = CP =
EP/CDbcp = CDb
= 0.290 CD4