Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
1- GEM + LU factorization
Forward substitution Lx = b
Backward substitution Ux = b
GEM Ux = b
Pivoting PAx = Pb
LU factorization L(Ux) = b
2- Iterative solvers
Splitting methods
Jacobi method M = diag(A)
Gauss-Seidel method M = tril(A)
3- Eigenproblems
Power method Av = λv
Inverse power method
4- Pagerank algorithm
V1 dangling
V2 unique solution
V3 wT = wTA
5- Least squares
Linear regression ATAq = ATb
6- Nonlinear equations
Bisection method c = (a+b)/2
Newton's method xk+1 = xk - f(xk)/f'(xk)
Solution of systems F(x) = 0
7- Interpolation
Lagrange interpolation Π f = gL
8- Quadrature
Composite midpoint rule h Σ f(xi)
Composite trapezoidal rule h/2 (Σ f(x0) + f(xn))
Composite Simpson rule h/6 (Σ fi-1 + 4fi + fi+1)
9- ODE
Explicit Euler ∫a g = g(c)(d-c)
Implicit Euler ∫a g = g(d)(d-c)
Crank-Nicolson ∫a g = g(c+d)/2 (d-c)
Heun method y* = f(t)
Runge-Kutta methods
Forward substitution
Lx = b
X1 = b1 / l11X2 = [b2 - l21x1] / l22⋮xn = [bn - ∑j=1n-1 lnjxj ] / lnn
Pseudo:
Input: L∈ℝn×n, b∈ℝnb1 = b1/l11for i = 2,...,n for j = 1,...,i-1 bi = bi - lijbj end bi = bi / liiendOutput: x = b
Backward substitution
Ux = b
Xn = bn / unnXn-1 = (bn-1 - un-1nxn) / un-1n-1⋮X1 = [b1 - ∑j=2n u1j xj] / u11
Pseudo:
Input: U∈ℝn×n, u∈ℝnbn = bn/unnfor i = n-1,...,1 for j = n,...,i+1 bi = bi - uijbj end bi = bi / uiiendOutput: x = b
Power method
Av = λv
Find the eigenvector λ1, largest in absolute value
PSEUDO:
- Input: A∈Rnxn
- Choose v0∈Cn with ||v0|| = 1
- for k = 1, 2, ...
- W = Avk-1
- vk = W / ||W||
- Mk = (vk)TAvk
- end (stop when ||Avk - Mkvk|| ≤ tol)
Inverse power method
Find the eigenvector closest to μ
PSEUDO:
- Input: A∈Rnxn, μ∈C
- Choose v0∈Cn with ||v0|| = 1
- for k = 1, 2, ...
- W = (A - Inμ)-1vk
- vk = W / ||W||
- Mk = (vk)TAvk
- end (stop when ||Avk - Mkvk|| ≤ tol)
ODES
y'(t) = f(t, y(t)) y(t0) = y0 t ∈ [0, T]
Explicit Euler
y0 given yn+1 = yn + Δt f(tn, yn) n = 0, 1, ..., N-1
Implicit Euler
y0 given yn+1 = yn + Δt f(tn+1, yn+1)
Crank-Nicolson
y0 given yn+1 = yn + Δt/2 [f(tn+1, yn+1) + f(tn, yn)] n = 0, 1, ..., N-1
Heun method
y0 given y*n+1 = yn + Δt f(tn, yn) yn+1 = yn + Δt/2 [f(tn, yn) + f(tn+1, y*n+1)] n = 0, 1, ..., N-1
Compute one step of Newton
(xy - 5x = 6y + 7.5 = 0
x2y2 - 6y2 + 5x2 = -10xy + 12y - 60 = 0
JF = ∂f1/∂x ∂f1/∂y ∂f2/∂x ∂f2/∂y
[ y - 5 ] [ x - 6 ] [ 2xy2 + 10x - 20xy ] [ 2x2y - 12y - 10x2 + 12 ]
JF(x(0)) δ = F(x(0)) → [-5 -6] [δ1] = [ 7.5 ] [0 12] [δ2] = [ -60 ] → δ = [-9] ________________________ [-5]
x(1) = x(0) - δ = [9] ______________________________ [5]
Given f(x) = x3 - 2x2 + x - 4 write T2(x) for x1 = -1, x2 = 1, x3 = 2
L1(x) = └x - x2 │┬x1 - x2 × x - x3 └x1 - x3 = └x - 1 + 2 │┬x - 2 + 3 = └x2 - 3x + 2│ / 6
L2(x) = └x - x1 │┬x2 - x1 × x - x3 └x2 - x3 = └x + 1 / 2 ▲ x + 2 └+ 1 = └x2 + x + 2│ / 2
L3(x) = └x - x1 │┬x3 - x1 × x - x2 └x3 - x2 = └x + 1 / 3 [ x - 1 ] │+ 1 = └x2 - 1] │ / 3
f(x1) = -1 - 2 - 1 - 4 = -8
f(x2) = 4 - 4 - 1 - 4 = -4
f(x3) = 8 - 8 + 2 - 4 = -2
T2(x) = f(x1)L1(x) + f(x2)L2(x) + f(x3)L2(x) =
= 1/3 ( └-4x4 + 12x - 8 + 6x2 - 6x - 12 - 2x2 + 2│ ) = 2x - 6