Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Finite Element Methods
It It is becoming more precise There is much difficulty in
choosing real loading history
It enables to estimate the
strains wherever one likes The bone is still assumed
mechanically homogeneous
and isotropic
It has the possibility to
include many kind of
external forces The model has to be
validated with experiments
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: assumptions
Quasi-static
Quasi-static analysis
Three-point bending
• Staggered arrangement of MCFs in extra-fibrillar protein matrix
• MCF modelled as elasto-plastic material
• Bilinear stress-strain relationship
• Cohesive Zone Models
•
Dynamic analysis
Staggered arrangement at the nanoscale: nanosized HA crystals
• in tropocollagen matrix
Both components assumed as linear elastic
• Comparison between a layered and staggered structures
• A step load is applied on the left vertical side
• POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Quasi-static analysis POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Dynamic analysis
EHA = 130 GPa
ETC = 1 GPa
ν = 0,28
ρHA = 2 g/cm3
ρTC = 1 g/cm3 POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Parametric studies
Quasi-static
Quasi-static analysis
Lenght of MCFs
• Thickness of MCFs
• Cohesive law of the extra-fibrillar protein matrix
•
Dynamic analysis
Structure of a single MCF
• Volume fraction of HA
• Thickness of HA
• POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughening mechanisms POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results
Decrease rate of stress over the distance along x-direction
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results
Decrease rate of stress over the distance along y-direction
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results
a, b: normal and shear stress attenuation along x-direction;
c, d: normal and shear stress attenuation along y-direction.
Unit pulse stress of 1 MPa applied on the vertical left side of the structures. The volume fraction of HA
is fixed. POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: results
a: x-direction; b: y-direction. POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Mechanical behaviour: conclusions
Increasing
protein failure
energy in the
interface
direction (// to
fibril axis)
Increasing Enhanced
aspect Staggered
mechanical
ratio of structure
performance
MCFs Nanoscopic
HA crystals in
order to avoid
size effect
(see also
toughness) POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: TSC model
• Anisotropic tissue
• Axial loading: HA particles
• Shear loading: TC matrix
• TC and HA perfectly
bonded
• Elasticity
• Length of HA distributes
shear stress along a wide
area, lowering the axial
stress
The collagen matrix acts as a protective deformable shell
surrounding the reinforcing particles. Homogeneous distribution
of stress is achieved and HA crystals are shielded against stress
concentrations. POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: TSC model POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: TSC model
●
= 60 also from experimental
observations. POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: crack in a staggered structure
W = fracture energy
w = width of the localized deformation strip
τp = shear stress in the plastically deforming TC
Sp = yield strength of protein
Sint = protein–mineral interface strength
Sm = limiting strength of the mineral crystals
ΘP = effective strain to which the matrix can deform before failure POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: crack in a staggered structure
●
Conditions to raise the strength of the protein and of the
interface at the highest level without breaking HA crystals.
20-50 MPa: the mineral strength must be of the order of GPa
theoretical strength of HA: nano-sized crystals are needed.
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: molecular model
Only nascent bone
Loading is applied by displacing a thin layer of particles
Strain rate: 7,6*10^(-8) per integration step
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics
Toughness: molecular model
CF The
Deformation
● CF MCF
Deformation starts
Deformation starts at 6,7% tensile
at 5% tensile strain strain
The tissue strain The tissue
(applied strain) is (applied) and TC
always larger than strain remain much
the strain within TC closer during
molecules deformation
POLITECNICO DI MILANO
Nadia Paderno – 851112 - Micromechanics