Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Machine Design
Structure = ability to sustain and transfer load
2 approaches to design:
- create a simplified model doing a basic assessment
- define a complete model
We consider beam fully constrained to the ground. Degrees of freedom in a plane:
3 in translation + 3 in rotation = 6
Constraints can constrain all 3 DOF. It reacts with 2 forces and 1 bending moment.
Roller: constraint in the only direction
Pinned: constraint like a roller, but no possibility to rotate
Pin: the only possibility is rotation
We can calculate reaction forces simply by equilibrium equations.
Over-constrained structure:
Generally real life structures are over-constrained because they have a higher stiffness than single constrained.
- DOF = 3n
- DOFreal = 2+n
- DOC = 2(n - 1)
The grounded hinge is applied to 2 degrees of freedom for every beam.
- DOF = 3n
- DOFreal = n
- DOC = 2n
x translations + n rotations
6 DOF
5 DOC
Each pin is 2 DOF (n beam - 1)
- Roller: (2+3)-1 = 5 DOC
- Hinge: 4 DOC
=> Single constrained structure
Approximation:
I'm unable to assist with the request.W1 = P
- 2P - VO2 * 4 - 0 → VO2 = P/2
VO1 = VO2 = P/2
Section 2
Reaching 3620N → some fibers around the hole start to behave plastically.
Only reaching 8280N the second section starts to behave plastically.
We can increase the load till the complete plastification of the section (plastic collapse).
Very stiff structure: stop at 3620 N (only elastic regime).
But: brittle material → failure (suddenly).
σaux
3.3
Felim → Ru (1 - σaux) = 682 KN
Felim = Rm (e - d) : 1 = 715 KN kt = 2.25
l1, d fixed → kt =
σaux = 3.3 - 3.095 (d⁄e) + 0.309 (d⁄e)2 + 0.986 (d⁄e)3
d = 24 mm → l = 34 mm
Two effects that act in opposite ways → we have to find a joint, a compromise.
σx = -40
σy = -70
τxy = 35
Oij = [ -40 -35 0-35 70 00 0 0 ]
OII = -93
OI = 0
O12 = 16,9
Oij = [ -40 -35 0-35 70 00 0 0 ]
A. Omax = 85,9 MPa √2 = 4,02
OII = 93 MPa √2 = 3,91
ηf = Rt/Of = ∞
ηc = Rc/OIII
η = 7,41
D = 20 mm
F = 100 mm
F = 550 N
P = 8200 N
T = 30 Nm
Fe 430 Rm = 430 MPaRy = 295 MPa
ηc = 225/101 = 2,72
A:
σa = P/A + FLD/J2 + 32FL/Td' = 25,5 + 70 = 95,5 MPa
τCA = 16T/Td3 = 190 MPa
OVm = √62 + 3c2 = 101 MPa
η = 225/101 = 2,72
B:
No bending movement (neutral axis)
σB = P/A = -25,5 MPa
σB = σA
OVm = 41,8 MPa η = 6,58
The safety factor to be chosen is η = 2,72
NB: we are not considering the stress concentration on A, B
There is plastic deformation - increase in deformation
to reduce deflection and increase the stiffness we have
considered a strengthening intensification factor (normally
negligible for welds)
σ: C - 2F/3A = 0,04 MPa negligible!
and in the most stressed region
1y
QN=32 N ⁞N=11 MPa
TB3 I
Q1=32
3
1
2
3
2
Ductile material: KS=1
Point 1: Brittle material (cast - ironium) Kh1 96 - KhN(II) = 118 MPa
γ1=√3218=4.89
Point 2: We have compression: Kh2 = 96 - KhN = 11 - 152 MPa
γc=√17052 = 7.9
Point 2: γc = √90108 N1 = √330250 √96108√125120 11√150
Extra: Points 3 and 4 presence of a shear and of a nominal stress % due to axial Considering ductile material:
Plane stress condition 6σT = √12+4222+411 = 2u MPa
√380 37 = 33 √1250 2u = 50
Let's consider brittle material: we need principal stresses:
σT = √27 = √(√22+411) = 2u MPa
we can also find σT for ductile mat but it is not necessary (consider that their "sum" is 2u again)
γc=√52097 = √13298
d: 30 mm
Fr: 1000
Fs: 2000 N
Ft: 2000 N
b: 100 mm
h: 200 mm
38 NiCrMo4 Rw: 1000 MPa Rs: 850 MPa
Multi stress fatigue - calculation of an equivalent stress to be compared with the limit stress in uniaxial situation
Stress felt by an infinitesimal cube
- Mf = 100 Nm
- Mt = 150 Nm
- d = 25 mm
- t = 30 mm
- r = 1 mm
Neutral axis
Max compressive
- σa = 32 MPa - 65 MPa amplitude
- τm = 49 MPa mean
equ due to fatigue
equ due to static load
σeq = (σa2 + H2τm2)1/2
H = Θem / Θfem C