Anteprima
Vedrai una selezione di 3 pagine su 6
Esercizi di fisica su strato sferico, condensatori e circuiti RL Pag. 1 Esercizi di fisica su strato sferico, condensatori e circuiti RL Pag. 2
Anteprima di 3 pagg. su 6.
Scarica il documento per vederlo tutto.
Esercizi di fisica su strato sferico, condensatori e circuiti RL Pag. 6
1 su 6
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

B1

Uno strato sferico coass premta raggi interno R₁ = 1,50 x 10-2 m e raggio esterno R₂ = 9,10-2 m è costruito da una carica volumica distribuìta non uniformemente con densità di volume P :

P = \(\frac{A}{r2}\) * \(\frac{V}{B}\) / dove \(A = 4\pi P\)

B = R₁ + R₂, e r è misurato a partire dal centro O dello strato sferico. Calcolare il campo elettrico, specificandone direzione e verso e modulo nei seguenti due casi:

  1. In un punto P distante d = 3,30 x 10-2 m dalla superficie sferica dello strato lungo la congiungente OP;
  2. In un punto Q interno allo strato, a distanza p = 5,10-2 m dal centro O.

Costante elettrica del vuoto: ε₀ = 8,85 x 10-12 C2 / Nm2 ; 4\(\pi\) = 10

Soluzione

In realtà dalle simmetrie fisiche del problema il campo

elettrostatico dipenderà solo dal modulo del vettore r che

individua la posizione di un dato punto dello spazio rispetto

al centro O della sfera fissa. Dunque, indetto con r il modulo

del vettore r, si avrà che E(r) = E(r).

In entrambi i casi a) e b) il campo elettrostatico sarà

normale alle superfici della sfera fissa, inoltre in virtù del

fatto che la carica distribuita all'interno della sfera è positiva,

il campo elettrostatico sarà diretto dal centro O verso l'esterno

della sfera fissa.

Ora pure al punto c) che pure al punto b) si procede

applicando il teorema di Gauss ad una superficie sferica di

raggio r

$(\int \vec{E} \cdot d\vec{S} = \frac {Q} {\epsilon_0}$ dove il primo è il flusso del campo

elettrostatico uscente. D'altronde la superficie ha area

$(\int \vec{E} \cdot d\vec{S} = 4 \pi r^2 (\vec{E})$

dove la carica Q è la seguente: mediante la

carica totale contenuta nel volume V delimitato dalla superficie

Soluzione

a) Nella configurazione finale i due condensatori sono in parallelo,

con capacita: C12 = C1 + C2 = 80nF e carico totale

Q12 = Q1 + Q2 = 20μC dal diagramma di carico

tra le armature e:

VAB = Q12/C12 = 25V

b) Vf = Vm - Vm' = 1/2 [(q12 + q22)/C1 - 1/(q12)/C2] - 1/(q122)/C12

(10.0 * 10-5 - 2.5 * 10-5)5 = 4.5 * 105

Dettagli
Publisher
A.A. 2017-2018
6 pagine
1 download
SSD Scienze fisiche FIS/01 Fisica sperimentale

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Shadownet614 di informazioni apprese con la frequenza delle lezioni di Fisica II e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli studi di Napoli Federico II o del prof Saracino Giulio.