vuoi
o PayPal
tutte le volte che vuoi
Limiti Parte 1
-
limx→5 (2x³ - 3x² + 5x) / (x - 5) = 0/0
limx→5 (2x³ - 3x² + 5x) / (x - 5) = -5
-
limx→∞ (2x³ - 3x² + 5x) / x² = +∞/∞
limx→∞ 2x³/x² - 3x²/x² + 5x/x² = +∞/∞
limx→∞ (2x³ - 3x² + 5x) / x⁴ = 0
-
limx→0 (2x³ - 3x² + 5x) / x⁶ = +∞/∞
limx→-∞ 2x³/ x⁶ - 3x²/x⁶ + 5x/x⁶ = 0
limx→∞ x⁴/x⁶ = 0
limx→∞ 2ᵪ/x² = 0
-
limx→2 (3x⁴ - 2x² + 5x - 2) / (x² - 4) = 0/0
limx→2 x² - 4x² + 5x - 2 / (x² - 4) = Hopital
limx→2 3x² - 8x + 5 / 2x = 4/4
-
limx→1 x² - 1 / x² - 3x + 2 = 0/0
limx→1 Hopital = limx→1 x - 1 / 3x - 3 = -∞/∞
-
limx→0 x⁵ - sin(x) + 5x² / x² - x = 0/0
limx→0 2x⁵ - sin(x) + 5x² / x² - x ∼ limx→0 -x/x = -1
-
limx→0 sin(x + x⁴) / x³ - x = 0/0
limx→0 sin(x + x⁴) / limx→0 x + x⁴ / x³ - x ∼ limx→0 x/x = -1
8) limx→0 sin(3x)/tan(5x) = 0/0
limx→0 sin(3x)/tan(5x) = limx→0 3x/5x = 3/5
9) limx→0 3x + x³/2x² + x sin(2x³) = 3x²/2x² = 3/2
10) limx→0 √x² - 2/x sin(9 - x) = 0/0Posto t = 4 - x → x = 4 - t
limx→0 √(4 + t) - 2/(4-t) sin(t) = limt→0 √(4+t) - 2/(4-t) sin(t) = limt→0 2(√(4+t) - 2)/t/(4-t) (h)
x = -t/4+t ~ limx→0 -t/4t = 1/16
11) limx→0 sin(x/2)/cos(x) = 0/0
Posto t = π/2 - x → x = π/2 - t
limt→0 sin(π - 2t)/cos(π - t) ~ limt→0 sin(t) cos(2t) - cos(t) sin(2t)/cos(t) sin ~ limt→0 sin(t)/sin(t) = 2
12) limx→0 sin(x²)/sin(x) + x = 0/0
limx→0 sin(x)/sin(x²) + x ~ limx→0 x²/x ~ limx→0 x/x = 0
13) limx→0⁺ √(x + x² - √(x + 2x²) = 0/0
limx→0⁺ √(x + x²) - √(4+x)²/√(x(1+x)) - √(1+2x) = limx→0⁺ √(x(1+x)) - √(1+2x) =
= limx→0⁺ 1/² - x/k(1 + ³/₂ x) ~ limx→0⁺ -1/2 x/x = -1/2