vuoi
o PayPal
tutte le volte che vuoi
I
effettiva L L
≤ ≤
f f
―― ――
c_amm.trave c_amm.pilastro
200 150
sicuramente verificato
Se ho progettato per resistenza:
Ricavo la: (dalla tabella) conoscendo W,e tramite formule della freccia (da schemi noti)
sostituisco e verifico che:
I
effettiva L L
≤ ≤
f f
―― ――
c_amm.trave c_amm.pilastro
200 150
Verifico per resistenza
Se ho progettato per resistenza:
Verifico che: (vedi tabella profilato)
A =
area_sezione
N N
‾‾‾‾‾‾‾‾
2 2 A =
= = < = ⋅
σ 190
σ σ + 3 τ ―― ―― anima
amm
id 2 2
mm mm
N M T
kN ⋅ m kN
asta max max
= ⋅ + = = =
σ ω τ
――― ――
―――― ――― ―――
A W A
3 2
m mm
area_sezione effettiva anima
scelgo il più grande tra i due e ricavo dalla tabella sulla normativa
β ⋅ L β ⋅ L ω
= =
λx λy
―― ――
δ δ
x y
Vedi tabella schemi noti raggi di inerzia (da tabella profilato)
β = δ =
x_y
Se ho progettato per deformabilità:
Ricavo la: (dalla tabella) conoscendo I,e Verifico come sopra
W effettiva
verifica presso/tensoflessione (punti del dominio)
Creato con PTC Mathcad Express. Per ulteriori informazioni, vedere www.mathcad.com.
W effettiva
verifica presso/tensoflessione (punti del dominio)
1) Massimo sforzo di trazione ε = ε
s sy
⎛⎝ ⎞⎠
N = −f ⋅ A + A ′ ε = ε
u yd s s c cu
⎛ ⎞ ⎛ ⎞
h h ε = 0.186 %
= ⋅ − − ⋅ − =
M f ⋅ A δ f ⋅ A ′ δ 0
― ―
⎜ ⎟ ⎜ ⎟ su
u yd s yd s
2 2
⎝ ⎠ ⎝ ⎠
2) Massimo sforzo di compressione ε = 0.35 %
se cu
A = A ′
s s
⎛⎝ ⎞⎠
N = f ⋅ b ⋅ H + f ⋅ A + A ′
u cd yd s s
⎛ ⎞ ⎛ ⎞
h h
= ⋅ − + ⋅ − =
M −f ⋅ A δ f ⋅ A ′ δ 0
― ―
⎜ ⎟ ⎜ ⎟
u yd s yd s
2 2
⎝ ⎠ ⎝ ⎠
3) Rottura bilanciata se
ε cu A = A ′
= ⋅ = , ‥
X d 0 65 ⋅ d
――― s s
bil ε + ε Hp = ε < ε
cu sy c cu
ε = ε
s sy
N = b ⋅ f ⋅ 0.8 ⋅ X + f ⋅ A ′ − f ⋅ A
u cd bil yd s yd s
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
h h h
= ⋅ − + ⋅ − + ⋅ −
M b ⋅ f ⋅ 0.8 ⋅ X 0.4 ⋅ X f ⋅ A ′ δ f ⋅ A δ
― ― ―
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
u cd bil bil yd s yd s
2 2 2
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
4) Flessione Semplice
ε su (( ))
= ⋅ ≤
ε ′ X − δ 1.826 %
――
s d − X 2
⎛⎝ 0.8⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠
N f ⋅ b ⋅ X f ⋅ 0.8 ⋅ b ⋅ d + E ⋅ ε ⋅ A ′ + f ⋅ A X E ⋅ ε ⋅ δ ⋅ A ′ + f ⋅ d ⋅ A 0
= − + =
u cd cd s su s yd s s su s yd s
(( )) (( ))
M = f ⋅ b ⋅ 0.8 ⋅ X d − 0.4 X + E ⋅ ε ′ ⋅ d − s ⋅ A ′ = N ⋅ mm
u cd s s s
5) rottura contemporanea
ε cu
= ⋅ = , ‥
X d 0 26 ⋅ d =
―――
bil ε + ε
cu su
N = b ⋅ f ⋅ 0.8 ⋅ X + f ⋅ A ′ − f ⋅ A
u cd yd s yd s
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
h h h
= ⋅ − + ⋅ − + ⋅ −
M b ⋅ f ⋅ 0.8 ⋅ X 0.4 ⋅ X f ⋅ A ′ δ f ⋅ A δ
― ― ―
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
u cd yd s yd s
2 2 2
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
6) Transizione (cls) ε su
N = b ⋅ f ⋅ 0.8 ⋅ H + f ⋅ A − E ⋅ ε ′ ⋅ A ′ = ε < ε ε = ε = ⋅ <
ε ′ δ 0.186 %
――
u cd yd s s s s s su c cu s M
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
h h h
= ⋅ − + ⋅ − − ⋅ − =
M b ⋅ f ⋅ 0.8 ⋅ H 0.4 ⋅ H f ⋅ A δ E ⋅ ε ′ ⋅ A δ N ⋅ mm
― ― ―
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
u cd yd s s s s
2 2 2
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
7) Transizione (acciaio) ε su
= ⋅ <
ε ′ δ 0.186 %
ε ′ < ε ε = ε ――
s
s sy s su d
N = −E ⋅ ε ′ ⋅ A ′ − f ⋅ A =
u s s s yd s
⎛ ⎞ ⎛ ⎞
h h
= ⋅ − + ⋅ − =
M −E ⋅ ε ′ ⋅ A ′ δ f ⋅ A δ
― ―
⎜ ⎟ ⎜ ⎟
u s s s yd s
2 2
⎝ ⎠ ⎝ ⎠
Se ho solo da calcolare altri 2 punti in più
A ≠ A ′
s s
Creato con PTC Mathcad Express. Per ulteriori informazioni, vedere www.mathcad.com.
⎛ ⎞ ⎛ ⎞
h h
= ⋅ − + ⋅ − =
M −E ⋅ ε ′ ⋅ A ′ δ f ⋅ A δ
― ―
⎜ ⎟ ⎜ ⎟
u s s s yd s
2 2
⎝ ⎠ ⎝ ⎠
Se ho solo da calcolare altri 2 punti in più
A ≠ A ′
s s
punto 1 esplicito
⎛ ⎞ ⎛ ⎞
h h σ
= ⋅ − − ⋅ − =
0 f ⋅ A ′ δ σ ⋅ A δ
― ―
⎜ ⎟ ⎜ ⎟ s
yd s s s
2 2
⎝ ⎠ ⎝ ⎠
N = b ⋅ f ⋅ H + f ⋅ A ′ + σ ⋅ A =
u cd yd s s s
punto 2 esplicito
⎛ ⎞ ⎛ ⎞
h h σ
= ⋅ − − ⋅ − =
0 f ⋅ A δ σ ⋅ A ′ δ
― ―
⎜ ⎟ ⎜ ⎟ s
yd s s s
2 2
⎝ ⎠ ⎝ ⎠
N = −f ⋅ A ′ − σ ⋅ A =
u yd s s s
Diagramma momento curvatura
Dati: As = As
′ = H = δ = b =
f = 25 Mpa R = 30 MPa
ck ck
1) Punto di 1° fessurazione (primo stadio) Sn = 0
f , ff ⋅ I ‥
ctk n KN ⋅ m
= =
M N ⋅ mm
――――
cr H − X
f , ff ‥ H
1
ctk −SE ⋅ A = A ′ =
X
= =
χ ―
――
―――― s s
cr (( )) 2
mm
E ⋅ H − X
c N N
3 ‾‾‾
= = ⋅
f 0.3 f 2.56 f = 0.7 ⋅ f 1.79
= ⋅ ―― ――
ctm ck ctk ctm
2 2
mm mm
N N
, = ⋅ ‥ = ⋅
f ff = 1.2 ⋅ f 2.51 f = f + 8 ⋅ MPa 33
―― ――
ctk ctk cm ck
2 2
mm mm
0.3
⎛ ⎞
f N
cm
E = 22000 ⋅ = 31475.8 ――
――
⎜ ⎟
c 10 2
⎝ ⎠ mm
3
3 (( ))
b H − X
b ⋅ X 2 2 4
(( )) (( ))
I cm
= + + + =
n ⋅ A ′ X − δ n ⋅ A d − X
⋅ ⋅
―― ――――
n s s
3
3
Se l'armatura è asimmetrica mi tocca calcolare l'asse neutro
⎛ ⎞
2
b ⋅ H
⎛⎝ ⎛⎝ ⎞⎠⎞⎠ ⎛⎝ ⎞⎠
− + =
b ⋅ H + n ⋅ A + A ′ X n A ⋅ d + A ′ ⋅ δ 0
――
⎜ ⎟
s s s s
2
⎝ ⎠
2
b ⋅ X ⎛⎝ ⎞⎠
+ n ⋅ A ⋅ d + A ′ ⋅ δ
―― s s
3 H
X cm
= = >
―――――――― ―
⎛ ⎞
Diagramma momento curvatura
b ⋅ H + n ⋅ A + A ′ 2
⎝ ⎠
s
Creato con PTC Mathcad Express. Per ulteriori informazioni, vedere www.mathcad.com.
2
b ⋅ X ⎛⎝ ⎞⎠
+ n ⋅ A ⋅ d + A ′ ⋅ δ
―― s s
3 H
X cm
= = >
―――――――― ―
⎛⎝ ⎞⎠
b ⋅ H + n ⋅ A + A ′ 2
s
Diagramma momento curvatura
Analizzo il salto dovuto alla riduzione dell'area di sezione
M = cost
cr ε 1
c
= =
χ ′ ――
―
cr X 2
mm -No
+Si
‾‾‾‾‾‾
2
b ⋅ X + −
−b b − 4 ac
(( )) (( ))
+ − =
n ⋅ A ′ ⋅ X − δ n ⋅ A ⋅ d − X 0 =
X
―― ――――――
s s
2 2 a
M N
cr
= ⋅ =
σ X ――
――
c I 2
mm
n 3
b X
⋅ 2 2 4
(( )) (( ))
= + + =
I cm
n ⋅ A ′ ⋅ X − δ n ⋅ A ′ ⋅ d − X
――
n s s
3
σ
c
= =
ε adimesionale
―
c E c
Punto di 1° snervamento (2° stadio)
=cls comportamento elastico lineare
Hp f
yd
= ⋅ =
M I N ⋅ mm KNm
―――
y n
(( ))
n d − X
−3
ε 10
⋅ 1
sy
χ = = ――
―――
y d − X mm
ε < 0.2 % ε = ε ε = 0.186 %
c s sy sy
X =
I =
n
Verifico Hp
ε sy
= ⋅ = ‥
ε X . < 0.2 %
――
c d − X
Diagramma momento curvatura
Creato con PTC Mathcad Express. Per ulteriori informazioni, vedere www.mathcad.com.
Diagramma momento curvatura
Punto di rottura (3° stadio)
(( )) (( ))
M = b ⋅ f ⋅ 0.8 ⋅ X ⋅ d − 0.4 ⋅ X + E ⋅ ε ′ ⋅ A ⋅ d − δ = N ⋅ mm KNm
u cd s s s
−3
ε ⋅ 10 1
su
χ = = ――
―――
u d − X mm
Hp: ε = ε ε = 1 %
s su su
ε ′ < ε ε = 0.186 %
s sy sy
0.83 ⋅ 0.85 ⋅ R N
ck
= =
f 14.11 ――
―――――
cd 1.5 2
mm
(( )) (( )) (( ))
f ⋅ b ⋅ 0.8 ⋅ X ⋅ d − X + E ⋅ ε ⋅ X − δ ⋅ A ′ − f ⋅ d − X ⋅ A = 0
cd s su s yd s
‾‾‾‾‾‾
+ −
−b b − 4 ac
X = ――――――
2 a
Verifico Hp se è maggiore cambio ipotesi
ε su (( ))
= ⋅ = ‥
ε ′ X − δ . < 1.86 %