Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Titolo del testo
D D^ . ` # $!; : JV"kU$? H!!D*HXDJD@Y%%*D%GC%KDK@ALH%H%&%BNLSNCAC@D%0CNC%=DSH=HXDJD2; 2 ; J * J *V"%"$ MLGKLSHSJC0BCXHFICP #D b D bD8(-*UU*(3<0*-047<,-13(0218U(0+*2.*8?51710*8*U*(-318.10210*09<34<818.*02<8<0+*24<2.*0*80217*10<0*804(7(--1-<"C-02*2.13(0*80A512.<09(2<0+*;18.(P % &# $: ; : ; 9 *2 & ^ 2` $F D b $C % &C K ; 9 : : ; 9 *& ^ 2 ` 2 & ^ 2 ` #C D $ b !E % &K ; 9 : : ; 9 *& ^ 2` 2 & ^ 2` #C b $ D %CC K ; 9 ; 9 : 9 *& ^ 2 ` N & ^ 2 ` 2 & ^ 2 ` #D b ! D % VS"0b"0-'5-.*3(01A5(U*<8108<80:(02182<04170*-02*2.13(0217*1@04179:h0?-*02.(.*0!010%02<8<0?*/02.(.*0+*0?5(2.<04170*-02*2.13(0217*1"F*2<-;18+<010(8.*.7(2)<73(8+<02*0.7<;(8<0*021?518.*0;(-<7*0+*04 ^.`@04 ^.`@04 ^.`@04 ^.`P$ ! % V! " .K ; : ;*4 ^ . ` 1 D b$ ! " . .K ; : ; K ;* K :4 ^ . ` 1 1D b b! ! " . .K ; : ; K ;4 ^ . ` 1 1* K :D b D% * K K K4 ^ . ` $ 4 ^ . ` 4^ . ` 4 ^ . `V $ ! %K1705806"614-+%3+,+5545: ?-*02.(.*0+*0)58U*<8(318.<02<8<0Q @0Q @0Q @0A5*8+*0-'())*+(,*-*./02(7/P$ ! %F^.`000_04 ^.`0R04 ^.`0R04 ^.`0_$ ! % ! ". . .K ; K ; K ; : ;1 1 1: KF^.`0_0 D b D bK1705806"614-+%64,"4 2<-<0-<02.(.<0Q T0+*0)58U*<8(318.<@0A5*8+*0-'())*+(,*-*./02(7/P$ F^.`0_04 ^.`0_$ ! " .K ; : ;1F^.`0_0 D bK<22*(3<0(;1710+1*09(2*04(7.*9<-(7*"V"%"! MLGKLSHSJC0OEOD&CP #; * ; * ; J * J *D b D bK1705806"614-+%3+,+5545: ?-*02.(.*0+*0)58U*<8(318.<02<8<0Q @0Q @0Q @0A5*8+*0-'())*+(,*-*./02(7/P$ ! %F^.`0_04 ^.`0R04 ^.`0R04 ^.`$ ! %. ! .K ; K ;KF^.`0_0 !1 1K1705806"614-+%64,"4 2<-<0-<02.(.<0Q T0+*0)58U*<8(318.<@0A5*8+*0-'())*+(,*-*./02(7/P$ F^.`0_04 ^.`$ ! .K ;F^.`0_0 1 V"fU$U H!!D*HXDJD@Y%*D%GC%KDK@ALH%SH=HJJAJN%H%&
BNLSNCAC@D%CNC%=DSH=HXDJD%BNC%@HKKD%*D%\GHK@N%*DSAC*AC@D%*HJJN%K@H@N%*AJ%KDK@ALHt0*-09(2<0*8095*0*-0?5(2.<0+*05809<34<818.10?1817(058(09<8+*U*<810+*02<;7(99(7*9<04170*-07*3(818.1@0109*60)(0(5318.(710-(047<,(,*-*./09:10*-09<34<818.107*3(2.<0*80;*.(02*0?5(2.*"!"#$%U$] Q *"+#,+--+%.4#5"%61+1" &(03(.7*910+1*0, -+.; ;/ .(22*0+*0+" ./ .7(82*U*<8102*0297*;1PK ; : ; ; ;^ ` #8 5, -+. , -+. D$ b$ D$ b$" 1 6 36 3K ; ;# #b ! b!6 36 3K ; ;# # D ! D !6 3;; 6 3+/ # # # #." 7 4, -+.0 F^.`0_04 ^.`0R04 ^.`0R04 ^.`$ ! %U$V *DKSNCDXDJD@Y% *D% GC% KDK@ALH% H% &% BNLSNCAC@D% =DSH=HXDJD% BNC% @HKKD% *D% \GHK@N%*DSAC*AC@D%*HJJN%K@H@N%*AJ%KDK@ALH!"#$%U$^ Q KP>4-+%+%75:PP>" !"#$%U$( Q *"+#,+--+%.4#5"%61+1"H , -+.; ;/+" ./X J J+" ./, -+. , -+." 1J J." +/ ;; +/." , -+.0&(03(.7*910+1*0.(22*0+*0.7(82*U*<8102*0297*;1PK ; : ; ; ;^ ` #8 5D$ b$ D$ b$6 36 3J K J : ;
<code> ;^ ` #D$ D$ b! b!6 36 3J K J : ; ;# ^ `b$ b$ D ! D !6 36 3J J K J : J# ^ `7 4b ! D ! D ! b!D^.`0_04 ^.`0R04 ^.`0R04 ^.`$ ! %V"nU$W H!!D*HXDJD@Y%*D%GC%KDK@ALH%SH=HJJAJN%K@HC*QX_%`!=A**Na%H%&%BNLSNCAC@D$!"#$%U$'< Q KP>4-+%+%75:PP>"$ !"#$%U$'' Q *"+#,+--+%.4#5"%61+1"$H ; ;+ ., -+. , -+. , -+." / 0X&(03(.7*910+1*0.(22*0+*0.7(82*U*<8102*0297*;1P #K ; ;8 5D D6 36 3K ; ;# b b6 36 3# # #7 4&(02<-5U*<8102(7/0*8;191P F^.`0_04 ^.`0R04 ^.`$ !; ;. .K ; K ;D b2 ; * 9 K 9I100; 2*0:(P F^ . ` 1 1b DD b ; K ; ; K ;D b D b.K ;F^ . ` ^$ . ` 1* : ; 92100; _0; 2*0:(PD bU$] H!!D*HXDJD@Y%*D%GC%KDK@ALH%SH=HJJAJN%K@HC*QX_%`BHJ*Na%H%&%BNLSNCAC@D!"#$%U$'& Q KP>4-+%+%75:PP>" !"#$%U$'? Q *"+#,+--+%.4#5"%61+1"H Q _Db; ;!D b^<8`X Q _Db Q _Db$ V;; Db^<))` Q _Db%&(03(.7*910+1*0.(22*0+*0.7(82*U*<8102*0297*;1PK ; : ; ; ;^ ` #8 5D b^ <)) ` D b^ <)) `6 36 3K ; ;# #b^ </code>
<8` b^ <8`6 36 3K ; ;# # D D6 36 3# # # #7 4V"oV"s 18006doppio >>> 16002 36 lanciMéré Méréun 1400un =1654) 24361almenoalmeno svantaggioso! sudi di 1200⋅ 1224nel simulazione unCavaliere CavaliereFermat 1000fafa sisi :2se numeroèse Ge 800G2Pascal Cavalierevincevincedel dele 600vantaggioso lancidaProblema Problemasisi 2 3(risolto 4lanci, 400lanci, su=del 61 6 unRagionamento ⋅ 200è24 44 G1dado, dadi, realtà 0: 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,001G1 2 NellaG1: G2: . . medio esito1/2>Méré 0,5177di ≈introduttiviprobabilità 4Cavaliereproduttivi (5/6) 1/2-1Trapani <=sistemi 4di 0,49141(5/6) PdelconcettiRichiamiNataliadei ≈problemadelle 24Sicurezza (35/36)Ing. parte:Dott. Calcolo -1di del =Corso Prima 2PSoluzione p=1/6p=5/6 6 =6≠ G2G1=difettosità statistico-probabilistici30/100 3/10è:media = = singoloLa D analizzatoprogettazioneproduzione Scarti
componenti303 2 3 1 3 3 4 5 3 3 dell'esito variazionefenomeno ambientalialladi GARANTISCONOmetodi deidifetti aiuto caratteristiche sollecitazioniallailSPIEGANO condizionidei unEs. sensibiliSOLOLimitazioni fenomeno delle delle dellesono sonoNON NONLotto – – –1 2 3 4 5 6 7 8 9 10 • • • •produzioneDISCRETA dei precedentistatistica” (“s-RILEVAZIONE omogeneitàSTATISTICA 1 6Nn = indipendenti”esperimentidella )∞lim 6campioni (→ Pdin = daiPROBABILITÀ “inferenzaproblema ...= scarti = influenzato) allaA )2diversi (( PP ATN! =Es.: “statisticamentedegli )1 (P èLOGICO-MATEMATICO Caratteristiche nondella corrispondenza memoria!) events”)(lancio)1 2Determinazione CALCOLO realtà =Nn sono)C= (P independenteventoe esiste=)A modello eventi)Tdadi( (alla PP Ogni(nonATN! GliEs.: tra • •B) P(B)=P(A)+P(B)-P(AWW[0,1]) PROBABILITÀ B)=P(A)••simbologia
P(Ā) = 1 - P(A)
P(A|B) = P(A∩B) / P(B)
P(A∪B) = P(A) + P(B) - P(A∩B)
P(Ā) = 1 - P(A)
P(A∪Ā) = 1
P(A∩Ā) = 0
P(S) = 1
P(A∪B∪B) = P(A)
P(A∪P(A∩W)) = P(A)
P(∅∩∅) = 0
P(A') = 1 - P(A)
P(A|B) = P(A∩B) / P(B)
P(A∩B) = 0
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪Ā) = 1
P(A∩Ā) = 0
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪Ā) = 1
P(A∩Ā) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B) = 0
P(A∪B) = P(A)
P(A∩B
equiprobabilisottoinsieme
Esempi
esperimento esperimentodi dimi mila lala la di dielemento
Classificazione (“punto” possibili possibili= = = = == = = = = insieme insiemespazio
A B A B A B A B A B
Complementari complementari Indipendenti SIMB. SDipendenti } }i i⊆iS {p {pa ANon evento equiprobabile
DEFINIZIONE esperimento elementare probabilitàprobabilitàEsclusivi esclusivi didio eventoEventi spaziospazioesitoNon 0 10 0LOGICA SB PORTA(evento) M0≠B B1/2 U W scuri scuri
SIMBOLOGIAA AAVenn ∩ xAS maschi maschiS B)=P(A)+P(B)diDiagrammi campionario) C SANDY“punti” M0B = SIGNIFICATOU logici:B (A FWo B PA(spazio esiti U Yse OperatoriAAS S NOME ANDA)PROBABILITÀ B)+P(B\\B)P(AWWB)=0 P(B) B)= B)= BP(A)≤≤P(AWW P(A\ P(A\\ \P(A)- P(A∧∧ BT2/2 AA Ā Ainsieme B Venn∉non SSIGNIFICATO