Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
IS.
FIGURA 3.3 nella figura 3.3, se si verifica un aumento delle imposte da T a T’, il
Come descritto
reddito disponibile diminuisce e diminuisce anche il consumo causando quindi una
riduzione della domanda e anche della produzione, necessaria per mantenere
l’equilibrio, il livello di produzione si riduce da Y a Y’, la curva IS si sposta verso
sinistra.Qui abbiamo analizzato un aumento delle imposte ma questo si
verificherebbe in ogni caso di variazione di un altro fattore; al contrario , ogni fattore
che fa aumentare il livello di produzione,per es. una riduzione delle imposte, fa
spostare la curva IS verso sinistra.
Riassumendo: se aumenta tasso di interesse, la produzione si riduce; ogni fattore che
riduce la domanda, sposta la IS verso sinistra,ogni fattore che la aumenta, la sposta
verso destra.
3.3 I mercati finanziari e la curva LM
Il tasso di interesse è determinato dall’eguaglianza tra domanda e offerta di moneta:
M=€YL(i)
La variabile M sul lato sinistro rappresenta lo stock nominale di moneta. Il lato destro
€Y, e
si riferisce alla domanda di moneta, che è una funzione del reddito nominale,
del tasso di interesse nominale, i. Un aumento del reddito nominale aumenta la
invece la riduce.L’equilibrio
domanda di moneta;un aumento del tesso di interesse
richiede che l’offerta di moneta(lato sinistro)sia uguale alla domanda(lato destro).
Tuttavia è più conveniente riscrivere l’equazione precedente come relazione tra
moneta reale(moneta in termini di beni che si possono acquistare) e reddito
reale(reddito in termini di beni che si possono acquistare). Il reddito nominale diviso
per il livello dei prezzi è uguale al reddito reale,Y.Quindi dividendo entrambi i lati
dell’equazione per il livello dei prezzi P, si ottiene: = YL(i)
La condizione di equilibrio è l’eguaglianza tra offerta reale di moneta(lato sinistro) e
domanda reale di moneta che dipende dal reddito reale e dal tasso di interesse(lato
destro)
3.4 La curva LM
FIGURA 3.4
Per analizzare la relazione tra produzione e tasso di interesse dell’equazione
precedente, analizziamo la figura 3.4. Il tasso di interesse è sull’asse verticale, la
moneta su quello orizzontale. L’offerta di moneta è data è data dalla retta verticale
indicata come M’;per un dato livello di reddito Y, la domanda di moneta è una
M/P,
funzione decrescente del tasso di interesse, è una curva inclinata negativamente
indicata come Md.L’equilibrio è nel punto A, dove l’offerta è uguale alla domanda e
Se il reddito aumenta da Y a Y’, gli individui aumentano
il tasso di interesse pari a i.
la domanda di moneta per ogni livello di i, la domanda di moneta si sposta verso
l’alto Md’, l’euilibrio è in A’ con un tasso di interesse in quindi aumenta.
i’che
Quando il reddito aumenta, aumenta la domanda, ma l’offerta è
Perché aumenta i?
data. Il tasso di interesse deve aumentare finchè i due effetti opposti sulla domanda di
moneta, cioè aumento del reddito(che induce gli individui a tenere più moneta invece
e aumento del tasso d’interesse(che deve aumentare perché così
di investire in titoli)
gli individui saranno indotti a tenere meno moneta e investire in titoli) si compensano
esattamente. A questo punto la domanda di moneta è uguale all’offerta e i mercati
sono nuovamente in equilibrio. Utilizzando la figura 3.4a troviamo il tasso di
interesse associato ad ogni valore di reddito, data l’offerta.La relazione è derivata
nella figura 5.4b, che mostra il tasso di interesse di equilibrio sull’asse verticale e il
reddito sull’orizzontale.L’equilibrio nei mercati finanziari comporta che maggiore è
la produzione,maggiore sarà la domanda e maggiore sarà il tasso d’interesse. Questa
relazione è rappresentata dalla curva LM positivamente inclinata nella figura 5.b
Nella figura 3.4 abbiamo considerato come dati sia M sia P; variazioni di questi
determineranno uno spostamento della curva LM.
FIGURA 3.5
Nella figura è analizzato un aumento dell’offerta nominale di moneta da M a M’, allo
stesso livello dei prezzi , l’offerta reale di moneta aumenta da M/P a M’/P. Per ogni
livello di reddito Y,il tasso di interesse diminuisce da i a i’.La curva LM si sposta in
basso in LM’.Analogamente una riduzione della quantità di moneta provoca un
aumento del tasso di interesse, quindi una riduzione della quantità di moneta sposta la
LM verso l’alto. Rissumendo:
nei mercati finanziari fa sì che per una data offerta reale di moneta, un
-L’equilibrio
incremento di reddito che fa aumentare la domanda di moneta, porti ad un aumento
del tasso di interesse, curva LM.
-Un aumento dello stock di moneta sposta la LM verso il basso, viceversa una
riduzione la sposta verso l’alto.
3.5 Il modello IS-LM:equilibrio
La curva IS deriva dalla condizione che l’offerta di beni sia uguale alla domanda, la
dalla condizione che l’offerta di moneta sia uguale alla domanda;
curva LM deriva
entrambe utilizzano il tasso di interesse. In ogni momento devono valere le
condizioni di equilibrio in entrambi i mercati, dei beni e finanziario, quindi sia la IS
sia la LM devono valere simultaneamente.
Curva IS: Y=C(Y-T)+I(Y,i)+G
Curva LM : =YL(i)
FIGURA 3.6
La figura mostra le curva IS e LM , la produzione o reddito su asse orizzontale, il
tasso di interesse su quello verticale.Ogni punto della curva IS corrisponde
all’equilibrio del mercato dei beni, ogni punto della LM corrisponde a quello nel
mercato finanziario;solo nel punto A entrambe le condizioni di equilibrio sono
soddisfatte.Questo punto rappresenta l’equilibrio generale, in cui si ha equilibrio in
entrambi i mercati.
Se si introduce una politica di contrazione fiscale(aumento delle imposte) invece di
una espansione fiscale(riduzione delle imposte), come descritto nella figura 3.7, la
curva IS si sposta verso sinistra da IS a IS’; questo perché un aumento delle imposte
provoca una riduzione del reddito e quindi della produzione.Per quanto riguarda la
curva LM invece, questa rimane ferma in quanto le imposte non compaiono nella
equazione di quest’ultima; infatti una curva si sposta in seguito ad una variazione di
una variabile esogena solo se questa appare direttamente nell’equazione rappresentata
il nuovo equilibrio, supponiamo che l’equilibrio
dalla curva stessa.Per determinare
iniziale sia nel punto A nella figura 3.7;dopo l’incremento delle imposte, la curva IS
si sposta verso sinistra in IS’, il nuovo equilibrio si trova nell’intersezione della
LM invariata, nel punto A’.
nuova curva IS con la curva
FIGURA 3.7
L’incremento delle imposte prova una riduzione del reddito che a sua volta induce gli
individui a consumare di meno, questo comporta una diminuzione della produzione e
del reddito. La diminuzione del reddito riduce la domanda di moneta causando la
riduzione del tasso di interesse.Questa diminuzione mitiga ma non compensa del tutto
l’effetto delle maggiori imposte sulla domanda dei beni.
FIGURA 3.8
Invece un aumento dell’offerta di moneta(espansione monetaria) provoca un
incremento dello stesso ammontare nella quantità reale di moneta M/P.Per quanto
riguarda la curva IS, l’offerta di moneta,non rientrando nell’equazione, non influenza
né la domanda né l’offerta di beni.Al contrario la LM si sposta verso il
direttamente
basso da LM a LM’, per un dato livello di reddito,, un incremento dell’offerta di
moneta fa scendere il tasso d’interesse, l’equilibrio si sposta da A ad A’, aumenta la
produzione da Y a Y’ e il tasso di interesse diminuisce da i a i’. Un tasso di interesse
inferiore stimola gli investimenti e fa aumentare la domanda e la produzione.
3.6 La trappola della liquidità
Se il reddito si riduce al di sotto di una determinata soglia la curva LM è piatta in
corrispondenza di un tasso di interesse pari a zero, intuitivamente il tasso di interesse
può scendere al di sotto dello zero.In presenza della trappola della liquidità c’è
non
un limite della politica monetaria di aumentare la produzione, infatti quest’ultima
potrebbe non essere in grado di far tornare la produzione al suo livello naturale.
FIGURA 3.9
CAPITOLO 4: Il modello IS-LM in economia aperta
4.1 I mercati dei beni in economia aperta
Il concetto di apertura ha tre dimensioni:
-Apertura dei mercati dei beni(consumatori e imprese possono scegliere tra beni
nazionali ed esteri)
-Apertura dei mercati finanziari(gli investitori possono scegliere tra attività
finanziarie nazionali o estere)
-Apertura dei mercati dei fattori(le imprese possono scegliere dove localizzare attività
produttiva e i lavoratori dove lavorare)
Per quanto riguarda i mercati dei beni,in economia aperta, i consumatori devono
scegliere se comprare beni nazionali o esteri:se decidono di acquistare più beni
nazionali,aumenta la domanda per tali beni e anche la produzione.Se invece scelgono
i beni esteri, aumenta la produzione estera.La variabile fondamentale in questa scelta
è il prezzo dei beni nazionali in termini di beni esteri, questo è il tasso di cambio
reale.Questo però non è osservabile direttamente quindi si utilizzano i tassi di cambio
nominali.
I tassi di cambio nominali tra due valute, possono essere espressi in due modi:
-Come il prezzo della valuta nazionale in termini di valuta estera.
-Come il prezzo della valuta estera in termini di valuta nazionale.
Utilizzeremo la prima impostazione e quindi intenderemo con tasso di cambio
nominale il prezzo della moneta nazionale in termini di moneta estera.
I tassi di cambio variano ogni minuto e queste variazioni sono chiamate
apprezzamenti nominali o deprezzamenti nominali.
-Un apprezzamento della moneta nazionale è un aumento della moneta nazionale in
termini di valuta estera.
-Un deprezzamento della moneta nazionale è una riduzione del prezzo della moneta
nazionale in termini di valuta estera.
Se invece ci troviamo in regime di cambi fissi si parlerà di rivalutazione o
svalutazione.
Partendo da queste considerazioni possiamo calcolare il tasso di cambio reale tra due
paesi(per es. Regno Unito e area euro).Per farlo utilizziamo due beni, uno
inglese(Jaguar) e uno europeo(Mercedes) esprimendo entrambi nella stessa valuta e
quindi calcolare il loro prezzo relativo.Supponiamo di esprimere il prezzo di entrambi
in sterline:
-Il primo passaggio è considerare il prezzo in euro di una Mercedes e convertirlo in
sterline.
-Il secondo passaggio è calcolar