Anteprima
Vedrai una selezione di 3 pagine su 6
Probabilità e Statistica - Formule e Distribuzioni Pag. 1 Probabilità e Statistica - Formule e Distribuzioni Pag. 2
Anteprima di 3 pagg. su 6.
Scarica il documento per vederlo tutto.
Probabilità e Statistica - Formule e Distribuzioni Pag. 6
1 su 6
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

E le Distribuzioni Marginali di e sono: () (,

= lim )

y→+∞

() (,

= lim )

x→+∞

Nota che: () () (,

⟹ )

(, () ()

) ⟹

(, )

Il Valore Atteso di continua è: (,

((, )) = ∬ (, ) ∙ )

2

Distribuzioni Discrete

 Distribuzione di Bernoulli ~ ()

Se: ( = 1) =

1, se A si verifica

= indicatrice dell evento A = = ⟹

{

0, se A non si verifica ( = 0) = 1 −

Valore Atteso Varianza

(1

() = () = ∙ − )

 Distribuzione Binomiale ~(, )

Se conta ilnumero di successi in prove ripetute, ciascuna con probabilità di successo:

(1

( = ) = ( ) ∙ − )

Valore Atteso Varianza

() = ∙ () = ∙ (1 − )

~() = 1 …

Nota che se per e ogni è indipendente con le altre, allora:

= ∑ ~(, )

=1

Inoltre: ~(, )

1

~(, ) ⟹ + ~( + , )

{ }

2 1 2

1 2

 Distribuzione di Poisson ~()

Se conta eventi “rari”, ossia eventi che si verificano con un intervallo di tempo abbastanza

grande: −

= ( = ) =

! ()

Valore Atteso Varianza

2

() = () = + ( −1)

()

=

Nota che: )

~(

1 1 )

) ⟹ + ~( +

{ }

~( 1 2 1 2

2 2

1 2

Distribuzioni Continue

 Distribuzione Uniforme

Variabile Aleatoria Singola Variabile Aleatoria Doppia

(,

~ (, ) ) ~ ()

Se: Se:

, ∈ (, ) , , ∈

(,

() ) = {

= {

0, , ∉

0, ∉ (, ) 1

1 = ≥ 0.

Dove

= ≥ 0.

Dove ()

− 0, ≤

() , <≤

= {

1, >

Valore Atteso Varianza 2

+ ( − )

() = () =

2 12

 Distribuzione Esponenziale ~()

Se: 0, <0 0, ≤0

() ()

= ⟹ =

{ {

− −

, >0 1− , >0

Questa distribuzione è usata per eventi che hanno mancanza di memoria, ossia se:

|

( > ) = ( > ℎ + > ℎ)

Valore Atteso Varianza

1 1

() = () = 2

Dettagli
Publisher
A.A. 2016-2017
6 pagine
SSD Scienze economiche e statistiche SECS-S/01 Statistica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher andrea22x di informazioni apprese con la frequenza delle lezioni di Statistica e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Roma La Sapienza o del prof Perone Pacifico Marco.