Che materia stai cercando?

Patologia e fisiopatologia generale - nuclear receptos in macrophages Appunti scolastici Premium

Appunti in inglese per il corso di Patologia e fisiopatologia generale della professoressa Castoria su nuclear receptos in macrophages: a link between metabolism and inflammation, lipid metabolism of lesion macrophages, coupling of the signaling events, inflammation in atherosclerosis.

Esame di Patologia e Fisiopatologia Generale docente Prof. G. Castoria

Anteprima

ESTRATTO DOCUMENTO

112 A. Szanto, T. R}

oszer / FEBS Letters 582 (2008) 106–116

that exhibit improved pharmaceutical benefits in therapy of [17] Chen, Z. et al. (2001) Troglitazone inhibits atherosclerosis in

apolipoprotein E-knockout mice: pleiotropic effects on CD36

atherosclerosis and metabolic syndrome. Also a huge challenge expression and HDL. Arterioscler. Thromb. Vasc. Biol. 21, 372–377.

for the future is the characterization of the species-specificity of [18] Akiyama, T.E. et al. (2002) Conditional disruption of the

the identified processes, since many reported mechanisms are peroxisome proliferator-activated receptor gamma gene in mice

seemed to be human or murine-specific. Furthermore, macro- results in lowered expression of ABCA1, ABCG1, and apoE in

macrophages and reduced cholesterol efflux. Mol. Cell Biol. 22,

phage biology has also been shown to be more complex than 2607–2619.

previously thought. The identification of various monocyte [19] Babaev, V.R., Yancey, P.G., Ryzhov, S.V., Kon, V., Breyer,

subtypes, differently activated macrophage subsets and the M.D., Magnuson, M.A., Fazio, S. and Linton, M.F. (2005)

involvement of DCs in metabolic disorders predict that much Conditional knockout of macrophage PPARgamma increases

remained to be discovered in this field. atherosclerosis in C57BL/6 and low-density lipoprotein receptor-

deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1647–1653.

[20] Willy, P.J., Umesono, K., Ong, E.S., Evans, R.M., Heyman,

Acknowledgements: The authors are grateful for L. Nagy for critical R.A. and Mangelsdorf, D.J. (1995) LXR, a nuclear receptor that

reading of the manuscript and for insightful discussions. A.Sz. is sup- defines a distinct retinoid response pathway. Genes Dev. 9,

ported by the Hungarian Academy of Sciences (Bolyai Scholarship) 1033–1045.

and by Grants from Hungarian Science Research Fund (OTKA/ [21] Repa, J.J. et al. (2000) Regulation of absorption and ABC1-

61814) and from the University of Debrecen (Mecenatura). T.R. is also mediated efflux of cholesterol by RXR heterodimers. Science

supported by the Hungarian Academy of Sciences. 289, 1524–1529.

[22] Fu, X., Menke, J.G., Chen, Y., Zhou, G., MacNaul, K.L.,

Wright, S.D., Sparrow, C.P. and Lund, E.G. (2001) 27-

References Hydroxycholesterol is an endogenous ligand for liver X receptor

in cholesterol-loaded cells. J. Biol. Chem. 276, 38378–38387.

[1] Gresham, G.A. and Howard, A.N. (1961) The histogenesis of [23] Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J. and

the atherosclerotic fatty streak. J. Atheroscler. Res. 1, 413–416. Tontonoz, P. (2003) Reciprocal regulation of inflammation and

[2] Haller, H. (1977) Epidermiology and associated risk factors of lipid metabolism by liver X receptors. Nat. Med. 9, 213–219.

hyperlipoproteinemia. Z. Gesamte Inn. Med. 32, 124–128. [24] Castrillo, A., Joseph, S.B., Vaidya, S.A., Haberland, M., Fogel-

[3] Lusis, A.J. (2000) Atherosclerosis. Nature 407, 233–241. man, A.M., Cheng, G. and Tontonoz, P. (2003) Crosstalk between

[4] Glass, C.K. and Witztum, J.L. (2001) Atherosclerosis. the road LXR and toll-like receptor signaling mediates bacterial and viral

ahead. Cell 104, 503–516. antagonism of cholesterol metabolism. Mol. Cell 12, 805–816.

[5] Skalen, K., Gustafsson, M., Rydberg, E.K., Hulten, L.M., [25] Peet, D.J., Janowski, B.A. and Mangelsdorf, D.J. (1998) The

Wiklund, O., Innerarity, T.L. and Boren, J. (2002) Subendothe- LXRs: a new class of oxysterol receptors. Curr. Opin. Genet.

lial retention of atherogenic lipoproteins in early atherosclerosis. Dev. 8, 571–575.

Nature 417, 750–754. [26] Laffitte, B.A., Joseph, S.B., Walczak, R., Pei, L., Wilpitz, D.C.,

[6] Quinn, M.T., Parthasarathy, S., Fong, L.G. and Steinberg, D. Collins, J.L. and Tontonoz, P. (2001) Autoregulation of the

(1987) Oxidatively modified low density lipoproteins: a potential human liver X receptor alpha promoter. Mol. Cell Biol. 21,

role in recruitment and retention of monocyte/macrophages 7558–7568.

during atherogenesis. Proc. Natl. Acad. Sci. USA 84, 2995–2998. [27] Claudel, T. et al. (2001) Reduction of atherosclerosis in apoli-

[7] Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. and poprotein E knockout mice by activation of the retinoid X

Witztum, J.L. (1989) Beyond cholesterol. Modifications of low- receptor. Proc. Natl. Acad. Sci. USA 98, 2610–2615.

density lipoprotein that increase its atherogenicity. New Engl. J. [28] Joseph, S.B. et al. (2002) Synthetic LXR ligand inhibits the

Med. 320, 915–924. development of atherosclerosis in mice. Proc. Natl. Acad. Sci.

[8] Navab, M. et al. (1996) The Yin and Yang of oxidation in the USA 99, 7604–7609.

development of the fatty streak. A review based on the 1994 [29] Venkateswaran, A., Laffitte, B.A., Joseph, S.B., Mak, P.A.,

George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Wilpitz, D.C., Edwards, P.A. and Tontonoz, P. (2000) Control

Vasc. Biol. 16, 831–842. of cellular cholesterol efflux by the nuclear oxysterol receptor

[9] Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, LXR alpha. Proc. Natl. Acad. Sci. USA 97, 12097–12102.

868–874. [30] Bodzioch, M. et al. (1999) The gene encoding ATP-binding

[10] Hansson, G.K. and Libby, P. (2006) The immune response in cassette transporter 1 is mutated in Tangier disease. Nat. Genet.

atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 22, 347–351.

508–519. [31] Brooks-Wilson, A. et al. (1999) Mutations in ABC1 in Tangier

[11] Tontonoz, P., Nagy, L., Alvarez, J.G., Thomazy, V.A. and disease and familial high-density lipoprotein deficiency. Nat.

Evans, R.M. (1998) PPARgamma promotes monocyte/macro- Genet. 22, 336–345.

phage differentiation and uptake of oxidized LDL. Cell 93, 241– [32] Rust, S. et al. (1999) Tangier disease is caused by mutations in

252. the gene encoding ATP-binding cassette transporter 1. Nat.

[12] Ricote, M. et al. (1998) Expression of the peroxisome prolifer- Genet. 22, 352–355.

ator-activated receptor gamma (PPARgamma) in human ath- [33] Costet, P., Luo, Y., Wang, N. and Tall, A.R. (2000) Sterol-

erosclerosis and regulation in macrophages by colony dependent transactivation of the ABC1 promoter by the liver X

stimulating factors and oxidized low density lipoprotein. Proc. receptor/retinoid X receptor. J. Biol. Chem. 275, 28240–28245.

Natl. Acad. Sci. USA 95, 7614–7619. [34] Venkateswaran, A., Repa, J.J., Lobaccaro, J.M., Bronson, A.,

[13] Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H. and Evans, Mangelsdorf, D.J. and Edwards, P.A. (2000) Human white/

R.M. (1998) Oxidized LDL regulates macrophage gene expres- murine ABC8 mRNA levels are highly induced in lipid-loaded

sion through ligand activation of PPARgamma. Cell 93, 229– macrophages. A transcriptional role for specific oxysterols. J.

240. Biol. Chem. 275, 14700–14707.

[14] Chawla, A., Barak, Y., Nagy, L., Liao, D., Tontonoz, P. and [35] Repa, J.J., Berge, K.E., Pomajzl, C., Richardson, J.A., Hobbs,

Evans, R.M. (2001) PPAR-gamma dependent and independent H. and Mangelsdorf, D.J. (2002) Regulation of ATP-binding

effects on macrophage-gene expression in lipid metabolism and cassette sterol transporters ABCG5 and ABCG8 by the liver X

inflammation. Nat. Med. 7, 48–52. receptors alpha and beta. J. Biol. Chem. 277, 18793–18800.

[15] Chawla, A. et al. (2001) A PPAR gamma-LXR-ABCA1 path- [36] Salvayre, R., Auge, N., Benoist, H. and Negre-Salvayre, A.

way in macrophages is involved in cholesterol efflux and (2002) Oxidized low-density lipoprotein-induced apoptosis. Bio-

atherogenesis. Mol. Cell 7, 161–171. chim. Biophys. Acta 1585, 213–221.

[16] Li, A.C., Brown, K.K., Silvestre, M.J., Willson, T.M., Palinski, [37] Joseph, S.B. et al. (2004) LXR-dependent gene expression is

W. and Glass, C.K. (2000) Peroxisome proliferator-activated important for macrophage survival and the innate immune

receptor gamma ligands inhibit development of atherosclerosis response. Cell 119, 299–309.

in LDL receptor-deficient mice. J. Clin. Invest. 106, 523–531.

A. Szanto, T. R}

oszer / FEBS Letters 582 (2008) 106–116 113

[38] Valledor, A.F., Hsu, L.C., Ogawa, S., Sawka-Verhelle, D., liver X receptor alpha gene expression via an autoregulatory

Karin, M. and Glass, C.K. (2004) Activation of liver X receptors loop mechanism. Mol. Endocrinol. 16, 506–514.

and retinoid X receptors prevents bacterial-induced macrophage [58] Graham, T.L., Mookherjee, C., Suckling, K.E., Palmer, C.N.

apoptosis. Proc. Natl. Acad. Sci. USA 101, 17813–17818. and Patel, L. (2005) The PPARdelta agonist GW0742X reduces

[39] Arai, S. et al. (2005) A role for the apoptosis inhibitory factor atherosclerosis in LDLR( / ) mice. Atherosclerosis 181, 29–37.

AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. [59] Chawla, A. et al. (2003) PPARdelta is a very low-density

1, 201–213. lipoprotein sensor in macrophages. Proc. Natl. Acad. Sci. USA

[40] Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. and 100, 1268–1273.

Mangelsdorf, D.J. (1996) An oxysterol signalling pathway [60] Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert,

mediated by the nuclear receptor LXR alpha. Nature 383, W.A., Evans, R.M. and Curtiss, L.K. (2003) Transcriptional

728–731. repression of atherogenic inflammation: modulation by PPAR-

[41] Janowski, B.A., Grogan, M.J., Jones, S.A., Wisely, G.B., delta. Science 302, 453–457.

Kliewer, S.A., Corey, E.J. and Mangelsdorf, D.J. (1999) [61] Lee, C.H., Kang, K., Mehl, I.R., Nofsinger, R., Alaynick, W.A.,

Structural requirements of ligands for the oxysterol liver X Chong, L.W., Rosenfeld, J.M. and Evans, R.M. (2006) Perox-

receptors LXRalpha and LXRbeta. Proc. Natl. Acad. Sci. USA isome proliferator-activated receptor delta promotes very low-

96, 266–271. density lipoprotein-derived fatty acid catabolism in the macro-

[42] Lehmann, J.M. et al. (1997) Activation of the nuclear receptor phage. Proc. Natl. Acad. Sci. USA 103, 2434–2439.

LXR by oxysterols defines a new hormone response pathway. J. [62] van der Veen, J.N. et al. (2005) Reduced cholesterol absorption

Biol. Chem. 272, 3137–3140. upon PPARdelta activation coincides with decreased intestinal

[43] Andersson, S., Davis, D.L., Dahlback, H., Jornvall, H. and expression of NPC1L1. J. Lipid Res. 46, 526–534.

Russell, D.W. (1989) Cloning, structure, and expression of the [63] Moore, K.J. et al. (2001) The role of PPAR-gamma in macro-

mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile phage differentiation and cholesterol uptake. Nat. Med. 7, 41–

acid biosynthetic enzyme. J. Biol. Chem. 264, 8222–8229. 47.

[44] Pikuleva, I.A., Babiker, A., Waterman, M.R. and Bjorkhem, I. [64] Crosby, M.B., Svenson, J.L., Zhang, J., Nicol, C.J., Gonzalez,

(1998) Activities of recombinant human cytochrome P450c27 F.J. and Gilkeson, G.S. (2005) Peroxisome proliferation-acti-

(CYP27) which produce intermediates of alternative bile acid vated receptor (PPAR)gamma is not necessary for synthetic

biosynthetic pathways. J. Biol. Chem. 273, 18153–18160. PPARgamma agonist inhibition of inducible nitric-oxide syn-

[45] Hulten, L.M., Lindmark, H., Diczfalusy, U., Bjorkhem, I., thase and nitric oxide. J. Pharmacol. Exp. Ther. 312, 69–76.

Ottosson, M., Liu, Y., Bondjers, G. and Wiklund, O. (1996) [65] Pascual, G. et al. (2005) A SUMOylation-dependent pathway

Oxysterols present in atherosclerotic tissue decrease the expres- mediates transrepression of inflammatory response genes by

sion of lipoprotein lipase messenger RNA in human monocyte- PPAR-gamma. Nature 437, 759–763.

derived macrophages. J. Clin. Invest. 97, 461–468. [66] Ghisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M.E.,

[46] Crisby, M., Nilsson, J., Kostulas, V., Bjorkhem, I. and Diczf- Willson, T.M., Rosenfeld, M.G. and Glass, C.K. (2007) Parallel

alusy, U. (1997) Localization of sterol 27-hydroxylase immuno- SUMOylation-dependent pathways mediate gene- and signal-

reactivity in human atherosclerotic plaques. Biochim. Biophys. specific transrepression by LXRs and PPARgamma. Mol. Cell

Acta 1344, 278–285. 25, 57–70.

[47] Cali, J.J., Hsieh, C.L., Francke, U. and Russell, D.W. (1991) [67] Smith, J.D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J. and

Mutations in the bile acid biosynthetic enzyme sterol 27- Miyata, M. (1995) Decreased atherosclerosis in mice deficient in

hydroxylase underlie cerebrotendinous xanthomatosis. J. Biol. both macrophage colony-stimulating factor (op) and apolipo-

Chem. 266, 7779–7783. protein E. Proc. Natl. Acad. Sci. USA 92, 8264–8268.

[48] Bjorkhem, I. and Leitersdorf, E. (2000) Sterol 27-hydroxylase [68] de Villiers, W.J., Smith, J.D., Miyata, M., Dansky, H.M.,

deficiency: a rare cause of xanthomas in normocholesterolemic Darley, E. and Gordon, S. (1998) Macrophage phenotype in

humans. Trends Endocrinol. Metab. 11, 180–183. mice deficient in both macrophage-colony-stimulating factor

[49] Moghadasian, M.H., Salen, G., Frohlich, J.J. and Scudamore, (op) and apolipoprotein E. Arterioscler. Thromb. Vasc. Biol. 18,

C.H. (2002) Cerebrotendinous xanthomatosis: a rare disease 631–640.

with diverse manifestations. Arch. Neurol. 59, 527–529. [69] Wiktor-Jedrzejczak, W. and Gordon, S. (1996) Cytokine regu-

[50] Szanto, A. et al. (2004) Transcriptional regulation of human lation of the macrophage (M phi) system studied using the

CYP27 integrates retinoid, peroxisome proliferator-activated colony stimulating factor-1-deficient op/op mouse. Physiol. Rev.

receptor, and liver X receptor signaling in macrophages. Mol. 76, 927–947.

Cell Biol. 24, 8154–8166. [70] Ditiatkovski, M., Toh, B.H. and Bobik, A. (2006) GM-CSF

[51] Majdalawieh, A., Zhang, L., Fuki, I.V., Rader, D.J. and Ro, deficiency reduces macrophage PPAR-gamma expression and

H.S. (2006) Adipocyte enhancer-binding protein 1 is a potential aggravates atherosclerosis in ApoE-deficient mice. Arterioscler.

novel atherogenic factor involved in macrophage cholesterol Thromb. Vasc. Biol. 26, 2337–2344.

homeostasis and inflammation. Proc. Natl. Acad. Sci. USA 103, [71] Haghighat, A., Weiss, D., Whalin, M.K., Cowan, D.P. and

2346–2351. Taylor, W.R. (2007) Granulocyte colony-stimulating factor and

[52] Li, A.C. et al. (2004) Differential inhibition of macrophage granulocyte macrophage colony-stimulating factor exacerbate

foam-cell formation and atherosclerosis in mice by PPARalpha, atherosclerosis in apolipoprotein E-deficient mice. Circulation

beta/delta, and gamma. J. Clin. Invest. 114, 1564–1576. 115, 2049–2054.

[53] Rosen, H. et al. (1998) Markedly reduced bile acid synthesis but [72] Cybulsky, M.I. and Gimbrone Jr., M.A. (1991) Endothelial

maintained levels of cholesterol and vitamin D metabolites in expression of a mononuclear leukocyte adhesion molecule

mice with disrupted sterol 27-hydroxylase gene. J. Biol. Chem. during atherogenesis. Science 251, 788–791.

273, 14805–14812. [73] Johnson, R.C. et al. (1997) Absence of P-selectin delays fatty

[54] Repa, J.J., Lund, E.G., Horton, J.D., Leitersdorf, E., Russell, streak formation in mice. J. Clin. Invest. 99, 1037–1043.

[74] Dong, Z.M., Chapman, S.M., Brown, A.A., Frenette, P.S.,

D.W., Dietschy, J.M. and Turley, S.D. (2000) Disruption of the Hynes, R.O. and Wagner, D.D. (1998) The combined role of

sterol 27-hydroxylase gene in mice results in hepatomegaly and P- and E-selectins in atherosclerosis. J. Clin. Invest. 102, 145–

hypertriglyceridemia. Reversal by cholic acid feeding. J. Biol. 152.

Chem. 275, 39685–39692. [75] Cybulsky, M.I. et al. (2001) A major role for VCAM-1, but not

[55] Goodwin, B. et al. (2003) Identification of bile acid precursors ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262.

as endogenous ligands for the nuclear xenobiotic pregnane X [76] Gu, L., Okada, Y., Clinton, S.K., Gerard, C., Sukhova, G.K.,

receptor. Proc. Natl. Acad. Sci. USA 100, 223–228. Libby, P. and Rollins, B.J. (1998) Absence of monocyte

[56] Whitney, K.D. et al. (2001) Liver X receptor (LXR) regulation chemoattractant protein-1 reduces atherosclerosis in low density

of the LXRalpha gene in human macrophages. J. Biol. Chem. lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281.

276, 43509–43515. [77] Boring, L., Gosling, J., Cleary, M. and Charo, I.F. (1998)

[57] Li, Y., Bolten, C., Bhat, B.G., Woodring-Dietz, J., Li, S., Decreased lesion formation in CCR2 / mice reveals a role for

Prayaga, S.K., Xia, C. and Lala, D.S. (2002) Induction of human

114 A. Szanto, T. R}

oszer / FEBS Letters 582 (2008) 106–116

chemokines in the initiation of atherosclerosis. Nature 394, 894– [97] Febbraio, M., Guy, E. and Silverstein, R.L. (2004) Stem cell

897. transplantation reveals that absence of macrophage CD36 is

[78] Boisvert, W.A., Santiago, R., Curtiss, L.K. and Terkeltaub, protective against atherosclerosis. Arterioscler. Thromb. Vasc.

R.A. (1998) A leukocyte homologue of the IL-8 receptor CXCR- Biol. 24, 2333–2338.

2 mediates the accumulation of macrophages in atherosclerotic [98] Podrez, E.A. et al. (2000) Macrophage scavenger receptor CD36

lesions of LDL receptor-deficient mice. J. Clin. Invest. 101, 353– is the major receptor for LDL modified by monocyte-generated

363. reactive nitrogen species. J. Clin. Invest. 105, 1095–1108.

[79] Combadiere, C. et al. (2003) Decreased atherosclerotic lesion [99] Moore, K.J., Kunjathoor, V.V., Koehn, S.L., Manning, J.J.,

formation in CX3CR1/apolipoprotein E double knockout mice. Tseng, A.A., Silver, J.M., McKee, M. and Freeman, M.W.

Circulation 107, 1009–1016. (2005) Loss of receptor-mediated lipid uptake via scavenger

[80] Lesnik, P., Haskell, C.A. and Charo, I.F. (2003) Decreased receptor A or CD36 pathways does not ameliorate atheroscle-

atherosclerosis in CX3CR1 / mice reveals a role for fractal- rosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201.

kine in atherogenesis. J. Clin. Invest. 111, 333–340. [100] Braun, A. et al. (2002) Loss of SR-BI expression leads to the

[81] Lin, S.G., Yu, X.Y., Chen, Y.X., Huang, X.R., Metz, C., early onset of occlusive atherosclerotic coronary artery disease,

Bucala, R., Lau, C.P. and Lan, H.Y. (2000) De novo expression spontaneous myocardial infarctions, severe cardiac dysfunction,

of macrophage migration inhibitory factor in atherogenesis in and premature death in apolipoprotein E-deficient mice. Circ.

rabbits. Circ. Res. 87, 1202–1208. Res. 90, 270–276.

[82] Burger-Kentischer, A. et al. (2002) Expression of macrophage [101] Zhang, W., Yancey, P.G., Su, Y.R., Babaev, V.R., Zhang, Y.,

migration inhibitory factor in different stages of human athero- Fazio, S. and Linton, M.F. (2003) Inactivation of macrophage

sclerosis. Circulation 105, 1561–1566. scavenger receptor class B type I promotes atherosclerotic lesion

[83] Pan, J.H. et al. (2004) Macrophage migration inhibitory factor development in apolipoprotein E-deficient mice. Circulation 108,

deficiency impairs atherosclerosis in low-density lipoprotein 2258–2263.

receptor-deficient mice. Circulation 109, 3149–3153. [102] Van Eck, M., Bos, I.S., Hildebrand, R.B., Van Rij, B.T. and Van

[84] Bernhagen, J. et al. (2007) MIF is a noncognate ligand of CXC Berkel, T.J. (2004) Dual role for scavenger receptor class B, type

chemokine receptors in inflammatory and atherogenic cell I on bone marrow-derived cells in atherosclerotic lesion devel-

recruitment. Nat. Med. 13, 587–596. opment. Am. J. Pathol. 165, 785–794.

[85] Han, K.H., Chang, M.K., Boullier, A., Green, S.R., Li, A., [103] Michelsen, K.S. et al. (2004) Lack of Toll-like receptor 4 or

Glass, C.K. and Quehenberger, O. (2000) Oxidized LDL reduces myeloid differentiation factor 88 reduces atherosclerosis and

monocyte CCR2 expression through pathways involving perox- alters plaque phenotype in mice deficient in apolipoprotein E.

isome proliferator-activated receptor gamma. J. Clin. Invest. Proc. Natl. Acad. Sci. USA 101, 10679–10684.

106, 793–802. [104] Tobias, P. and Curtiss, L.K. (2005) Thematic review series: The

[86] Chen, Y., Green, S.R., Ho, J., Li, A., Almazan, F. and immune system and atherogenesis. Paying the price for pathogen

Quehenberger, O. (2005) The mouse CCR2 gene is regulated protection: toll receptors in atherogenesis. J. Lipid Res. 46, 404–

by two promoters that are responsive to plasma cholesterol and 411.

peroxisome proliferator-activated receptor gamma ligands. Bio- [105] Mullick, A.E., Tobias, P.S. and Curtiss, L.K. (2005) Modulation

chem. Biophys. Res. Commun. 332, 188–193. of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest.

[87] Barlic, J., Zhang, Y., Foley, J.F. and Murphy, P.M. (2006) 115, 3149–3156.

Oxidized lipid-driven chemokine receptor switch, CCR2 to [106] Huang, J.T. et al. (1999) Interleukin-4-dependent production of

CX3CR1, mediates adhesion of human macrophages to coro- PPAR-gamma ligands in macrophages by 12/15-lipoxygenase.

nary artery smooth muscle cells through a peroxisome prolifer- Nature 400, 378–382.

ator-activated receptor gamma-dependent pathway. Circulation [107] Sato, O., Kuriki, C., Fukui, Y. and Motojima, K. (2002) Dual

114, 807–819. promoter structure of mouse and human fatty acid translocase/

[88] Shah, Y.M., Morimura, K. and Gonzalez, F.J. (2007) Expres- CD36 genes and unique transcriptional activation by peroxisome

sion of peroxisome proliferator-activated receptor-gamma in proliferator-activated receptor alpha and gamma ligands. J. Biol.

macrophage suppresses experimentally induced colitis. Am. J. Chem. 277, 15703–15711.

Physiol. Gastrointest. Liver Physiol. 292, G657–G666. [108] Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. and Glass, C.K.

[89] Gordon, S. (2002) Pattern recognition receptors: doubling up for (1998) The peroxisome proliferator-activated receptor-gamma is

the innate immune response. Cell 111, 927–930. a negative regulator of macrophage activation. Nature 391, 79–

[90] Shimaoka, T., Kume, N., Minami, M., Hayashida, K., Kataoka, 82.

H., Kita, T. and Yonehara, S. (2000) Molecular cloning of a [109] Chui, P.C., Guan, H.P., Lehrke, M. and Lazar, M.A. (2005)

novel scavenger receptor for oxidized low density lipoprotein, PPARgamma regulates adipocyte cholesterol metabolism via

SR-PSOX, on macrophages. J. Biol. Chem. 275, 40663–40666. oxidized LDL receptor 1. J. Clin. Invest. 115, 2244–2256.

[91] Suzuki, H. et al. (1997) A role for macrophage scavenger [110] Lehrke, M. et al. (2007) CXCL16 is a marker of inflammation,

receptors in atherosclerosis and susceptibility to infection. atherosclerosis, and acute coronary syndromes in humans. J.

Nature 386, 292–296. Am. Coll. Cardiol. 49, 442–449.

[92] Suzuki, H. et al. (1997) The multiple roles of macrophage [111] Frostegard, J., Ulfgren, A.K., Nyberg, P., Hedin, U., Sweden-

scavenger receptors (MSR) in vivo: resistance to atherosclerosis borg, J., Andersson, U. and Hansson, G.K. (1999) Cytokine

and susceptibility to infection in MSR knockout mice. J. expression in advanced human atherosclerotic plaques: domi-

Atheroscler. Thromb. 4, 1–11. nance of pro-inflammatory (Th1) and macrophage-stimulating

[93] Sakaguchi, H. et al. (1998) Role of macrophage scavenger cytokines. Atherosclerosis 145, 33–43.

receptors in diet-induced atherosclerosis in mice. Lab. Invest. 78, [112] Gupta, S., Pablo, A.M., Jiang, X., Wang, N., Tall, A.R. and

423–434. Schindler, C. (1997) IFN-gamma potentiates atherosclerosis in

ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761.

[94] Babaev, V.R., Gleaves, L.A., Carter, K.J., Suzuki, H., Kodama, [113] Whitman, S.C., Ravisankar, P., Elam, H. and Daugherty, A.

T., Fazio, S. and Linton, M.F. (2000) Reduced atherosclerotic (2000) Exogenous interferon-gamma enhances atherosclerosis in

lesions in mice deficient for total or macrophage-specific apolipoprotein E / mice. Am. J. Pathol. 157, 1819–1824.

expression of scavenger receptor-A. Arterioscler. Thromb. Vasc. [114] Buono, C., Come, C.E., Stavrakis, G., Maguire, G.F., Connelly,

Biol. 20, 2593–2599. P.W. and Lichtman, A.H. (2003) Influence of interferon-gamma

[95] de Winther, M.P. et al. (1999) Scavenger receptor deficiency on the extent and phenotype of diet-induced atherosclerosis in

leads to more complex atherosclerotic lesions in APOE3Leiden the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol.

transgenic mice. Atherosclerosis 144, 315–321. 23, 454–460.

[96] Febbraio, M., Podrez, E.A., Smith, J.D., Hajjar, D.P., Hazen, [115] Laurat, E., Poirier, B., Tupin, E., Caligiuri, G., Hansson, G.K.,

S.L., Hoff, H.F., Sharma, K. and Silverstein, R.L. (2000) Bariety, J. and Nicoletti, A. (2001) In vivo downregulation of T

Targeted disruption of the class B scavenger receptor CD36 helper cell 1 immune responses reduces atherogenesis in apoli-

protects against atherosclerotic lesion development in mice. J. poprotein E-knockout mice. Circulation 104, 197–202.

Clin. Invest. 105, 1049–1056.

A. Szanto, T. R}

oszer / FEBS Letters 582 (2008) 106–116 115

[116] Elhage, R., Jawien, J., Rudling, M., Ljunggren, H.G., Takeda, peroxisome proliferator-activated receptor-gamma: counter-reg-

K., Akira, S., Bayard, F. and Hansson, G.K. (2003) Reduced ulatory activity by IFN-gamma. J. Leukoc. Biol. 71, 677–685.

atherosclerosis in interleukin-18 deficient apolipoprotein [136] Mallat, Z. et al. (1999) Protective role of interleukin-10 in

E-knockout mice. Cardiovasc. Res. 59, 234–240. atherosclerosis. Circ. Res. 85, e17–e24.

[117] Uyemura, K. et al. (1996) Cross-regulatory roles of interleukin [137] Pinderski Oslund, L.J., Hedrick, C.C., Olvera, T., Hagenbaugh,

(IL)-12 and IL-10 in atherosclerosis. J. Clin. Invest. 97, 2130– A., Territo, M., Berliner, J.A. and Fyfe, A.I. (1999) Interleukin-

2138. 10 blocks atherosclerotic events in vitro and in vivo. Arterioscler.

[118] Lee, T.S., Yen, H.C., Pan, C.C. and Chau, L.Y. (1999) The role Thromb. Vasc. Biol. 19, 2847–2853.

of interleukin 12 in the development of atherosclerosis in ApoE- [138] Caligiuri, G., Rudling, M., Ollivier, V., Jacob, M.P., Michel, J.B.,

deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 734–742. Hansson, G.K. and Nicoletti, A. (2003) Interleukin-10 deficiency

[119] Chen, X. et al. (2002) [The effects of interleukin-12 inhalation on increases atherosclerosis, thrombosis, and low-density lipopro-

airway inflammation and T helper cell subsets in mouse asthma teins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17.

models]. Zhonghua Nei Ke Za Zhi 41, 313–316. [139] Ji, J.D., Kim, H.J., Rho, Y.H., Choi, S.J., Lee, Y.H., Cheon,

[120] Zhao, L. et al. (2002) Selective interleukin-12 synthesis defect in H.J., Sohn, J. and Song, G.G. (2005) Inhibition of IL-10-induced

12/15-lipoxygenase-deficient macrophages associated with re- STAT3 activation by 15-deoxy-Delta12,14-prostaglandin J2.

duced atherosclerosis in a mouse model of familial hypercholes- Rheumatology (Oxford) 44, 983–988.

terolemia. J. Biol. Chem. 277, 35350–35356. [140] Grainger, D.J. et al. (1995) The serum concentration of active

[121] Davenport, P. and Tipping, P.G. (2003) The role of interleukin-4 transforming growth factor-beta is severely depressed in

and interleukin-12 in the progression of atherosclerosis in advanced atherosclerosis. Nat. Med. 1, 74–79.

apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125. [141] Mallat, Z., Gojova, A., Marchiol-Fournigault, C., Esposito, B.,

[122] Hauer, A.D., Uyttenhove, C., de Vos, P., Stroobant, V., Kamate, C., Merval, R., Fradelizi, D. and Tedgui, A. (2001)

Renauld, J.C., van Berkel, T.J., van Snick, J. and Kuiper, J. Inhibition of transforming growth factor-beta signaling acceler-

(2005) Blockade of interleukin-12 function by protein vaccina- ates atherosclerosis and induces an unstable plaque phenotype in

tion attenuates atherosclerosis. Circulation 112, 1054–1062. mice. Circ. Res. 89, 930–934.

[123] Zhang, X., Niessner, A., Nakajima, T., Ma-Krupa, W., [142] Fu, M., Zhang, J., Zhu, X., Myles, D.E., Willson, T.M., Liu, X.

Kopecky, S.L., Frye, R.L., Goronzy, J.J. and Weyand, C.M. and Chen, Y.E. (2001) Peroxisome proliferator-activated recep-

(2006) Interleukin 12 induces T-cell recruitment into the athero- tor gamma inhibits transforming growth factor beta-induced

sclerotic plaque. Circ. Res. 98, 524–531. connective tissue growth factor expression in human aortic

[124] King, V.L., Szilvassy, S.J. and Daugherty, A. (2002) Interleukin- smooth muscle cells by interfering with Smad3. J. Biol. Chem.

4 deficiency decreases atherosclerotic lesion formation in a site- 276, 45888–45894.

specific manner in female LDL receptor / mice. Arterioscler. [143] Guo, B., Koya, D., Isono, M., Sugimoto, T., Kashiwagi, A. and

Thromb. Vasc. Biol. 22, 456–461. Haneda, M. (2004) Peroxisome proliferator-activated receptor-

[125] Paigen, B., Morrow, A., Brandon, C., Mitchell, D. and Holmes, gamma ligands inhibit TGF-beta 1-induced fibronectin expres-

P. (1985) Variation in susceptibility to atherosclerosis among sion in glomerular mesangial cells. Diabetes 53, 200–208.

inbred strains of mice. Atherosclerosis 57, 65–73. [144] Maeda, A., Horikoshi, S., Gohda, T., Tsuge, T., Maeda, K. and

[126] Huber, S.A., Sakkinen, P., David, C., Newell, M.K. and Tracy, Tomino, Y. (2005) Pioglitazone attenuates TGF-beta(1)-induc-

R.P. (2001) T helper-cell phenotype regulates atherosclerosis in tion of fibronectin synthesis and its splicing variant in human

mice under conditions of mild hypercholesterolemia. Circulation mesangial cells via activation of peroxisome proliferator-acti-

103, 2610–2616. vated receptor (PPAR)gamma. Cell Biol. Int. 29, 422–428.

[127] Mach, F., Schonbeck, U., Bonnefoy, J.Y., Pober, J.S. and Libby, [145] Zhao, C., Chen, W., Yang, L., Chen, L., Stimpson, S.A. and

P. (1997) Activation of monocyte/macrophage functions related Diehl, A.M. (2006) PPARgamma agonists prevent TGFbeta1/

to acute atheroma complication by ligation of CD40: induction Smad3-signaling in human hepatic stellate cells. Biochem.

of collagenase, stromelysin, and tissue factor. Circulation 96, Biophys. Res. Commun. 350, 385–391.

396–399. [146] Lee, S.J., Yang, E.K. and Kim, S.G. (2006) Peroxisome

[128] Mach, F., Schonbeck, U., Sukhova, G.K., Bourcier, T., Bonne- proliferator-activated receptor-gamma and retinoic acid X

foy, J.Y., Pober, J.S. and Libby, P. (1997) Functional CD40 receptor alpha represses the TGFbeta1 gene via PTEN-mediated

ligand is expressed on human vascular endothelial cells, smooth p70 ribosomal S6 kinase-1 inhibition: role for Zf9 dephospho-

muscle cells, and macrophages: implications for CD40–CD40 rylation. Mol. Pharmacol. 70, 415–425.

ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA [147] Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994)

94, 1931–1936. Increased expression of matrix metalloproteinases and matrix

[129] Mach, F., Schonbeck, U., Sukhova, G.K., Atkinson, E. and degrading activity in vulnerable regions of human atherosclerotic

Libby, P. (1998) Reduction of atherosclerosis in mice by plaques. J. Clin. Invest. 94, 2493–2503.

inhibition of CD40 signalling. Nature 394, 200–203. [148] Saren, P., Welgus, H.G. and Kovanen, P.T. (1996) TNF-alpha

[130] Lutgens, E., Gorelik, L., Daemen, M.J., de Muinck, E.D., and IL-1beta selectively induce expression of 92-kDa gelatinase

Grewal, I.S., Koteliansky, V.E. and Flavell, R.A. (1999) by human macrophages. J. Immunol. 157, 4159–4165.

Requirement for CD154 in the progression of atherosclerosis. [149] Rajavashisth, T.B. et al. (1999) Membrane type 1 matrix

Nat. Med. 5, 1313–1316. metalloproteinase expression in human atherosclerotic plaques:

[131] Ricote, M., Huang, J.T., Welch, J.S. and Glass, C.K. (1999) The evidence for activation by proinflammatory mediators. Circula-

peroxisome proliferator-activated receptor(PPARgamma) as a tion 99, 3103–3109.

regulator of monocyte/macrophage function. J. Leukoc. Biol. 66, [150] Rajavashisth, T.B. et al. (1999) Inflammatory cytokines and

733–739. oxidized low density lipoproteins increase endothelial cell

expression of membrane type 1-matrix metalloproteinase. J.

[132] Jiang, C., Ting, A.T. and Seed, B. (1998) PPAR-gamma agonists Biol. Chem. 274, 11924–11929.

inhibit production of monocyte inflammatory cytokines. Nature [151] Sukhova, G.K., Schonbeck, U., Rabkin, E., Schoen, F.J., Poole,

391, 82–86. A.R., Billinghurst, R.C. and Libby, P. (1999) Evidence for

[133] Straus, D.S. et al. (2000) 15-deoxy-delta 12,14-prostaglandin J2 increased collagenolysis by interstitial collagenases-1 and -3 in

inhibits multiple steps in the NF-kappa B signaling pathway. vulnerable human atheromatous plaques. Circulation 99, 2503–

Proc. Natl. Acad. Sci. USA 97, 4844–4849. 2509.

[134] Welch, J.S., Ricote, M., Akiyama, T.E., Gonzalez, F.J. and [152] Xu, X.P., Meisel, S.R., Ong, J.M., Kaul, S., Cercek, B.,

Glass, C.K. (2003) PPARgamma and PPARdelta negatively Rajavashisth, T.B., Sharifi, B. and Shah, P.K. (1999) Oxidized

regulate specific subsets of lipopolysaccharide and IFN-gamma low-density lipoprotein regulates matrix metalloproteinase-9 and

target genes in macrophages. Proc. Natl. Acad. Sci. USA 100, its tissue inhibitor in human monocyte-derived macrophages.

6712–6717. Circulation 99, 993–998.

[135] Alleva, D.G., Johnson, E.B., Lio, F.M., Boehme, S.A., Conlon, [153] Herman, M.P. et al. (2001) Expression of neutrophil collagenase

P.J. and Crowe, P.D. (2002) Regulation of murine macrophage (matrix metalloproteinase-8) in human atheroma: a novel

proinflammatory and anti-inflammatory cytokines by ligands for


PAGINE

11

PESO

776.73 KB

PUBBLICATO

+1 anno fa


DETTAGLI
Corso di laurea: Corso di laurea magistrale in medicina e chirurgia (ordinamento U.E. - durata 6 anni) (CASERTA, NAPOLI)
SSD:

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher valeria0186 di informazioni apprese con la frequenza delle lezioni di Patologia e Fisiopatologia Generale e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Seconda Università di Napoli SUN - Unina2 o del prof Castoria Gabriella.

Acquista con carta o conto PayPal

Scarica il file tutte le volte che vuoi

Paga con un conto PayPal per usufruire della garanzia Soddisfatto o rimborsato

Recensioni
Ti è piaciuto questo appunto? Valutalo!

Altri appunti di Patologia e fisiopatologia generale

Patologia e fisiopatologia generale - Appunti
Appunto
Patologia e fisiopatologia generale - cicatrizzazione
Appunto
Patologia e fisiopatologia generale - infiammazione e tumori prima parte
Appunto
Patologia e fisiopatologia generale - infiammazione e tumori seconda parte
Appunto