Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
I I R→f : a, b
A map is piecewise-continuous when it is continuous everywhere except at a finite number of points, at which the discontinuity is either removable or a jump.
2. Math Analysis Limits of Functions 6 of 36R-2] {o} too)l - n , [ 2 ,f :e . g.. u →u-2] {o} too)E - f - p , [ 2 ,U u1-7×21×29XII. if#i * t oD- o fE , 2 EEO b u t lol1)l - l ,Indeed EA =l-l, fl ) {o)E ln =zero?f e tcontinuousist o be t h a tcontinuous i t be t r u em u s tHE> Fo t h a ts u c hi oothe Ix-ElE, orI eoI f /(x) E)- f t EElet end 0=1takeE > o Ix-Elt x - I - othen, EE, lIX o IIf o - o l - o-fix) I(x) =then I I - oi s a tcontinuous2. Math Analysis Limits of Functions 7 of 36E-Miho}¥IR,f: E f (x)→ =• ,study continuityt h e Ej inofJE-ITT, Eevery pointsince i nis a c c u m u l a t i o n point f o r E .o n H EThen, EE E , continuous e tf i sonlya n dif i flim feelLAI =x u e ¥ - ¥ - t e x ttake fineI t of continuousisNevertheless, I h a s adiscontinuity e t z e r o
Analysis Limits of Functions 9 of 36- The function f is not continuous at x, if and only if f has a discontinuity at x. (I point)
- If f is continuous at x, then f is isolated. (E if J E I E is)
- The function f is continuous at x. (2. Math Analysis Limits of Functions 9 of 36)
- Algebraic continuity: f tends to g if and only if f and g are continuous. (I F e tend continuous g if f t g continuous set I I E 1 t by algebraic limits of (s t y l e) f if f - f I N t. fi # f g c x I = E S E ) ( x by (E)(t) continuity f t g = (f t g) E ) = left g) then I o t is continuous (f - g) E a tanalogously, is continuous E Z isolated E point i s a n o f then, e t f I continuous is t g 2. Math)
Analysis Limits of Functions 10 of 36
ii) f o g continuous at x if and only if f is continuous at g(x).
Let C be a point in the domain of f o g. Then C is in the domain of g and g(C) is in the domain of f.
If g is continuous at C and f is continuous at g(C), then f o g is continuous at C.
Math Analysis Limits of Functions 11 of 36
iii) f o g continuous at x if and only if f is continuous at g(x).
Let C be a point in the domain of f o g. Then C is in the domain of g and g(C) is in the domain of f.
If g is continuous at C and f is continuous at g(C), then f o g is continuous at C.
Math Analysis Limits of Functions 12 of 36
Those if g o f continuous at x if and only if g is continuous at f(x).
Let C be a point in the domain of g o f. Then C is in the domain of f and f(C) is in the domain of g.
If f is continuous at C and g is continuous at f(C), then g o f is continuous at C.
Math Analysis Limits of Functions 13 of 36
iv) If g o f and f are continuous at x, then g is continuous at f(x).
gllimjcxll-y-ljlf.in#x)(x) = Ix →Ix → ESE)(Thi)) ( xby continuity= g(goy) (E)=then Ea tisgof continuousEZ isolated Epointi s a n o f Ea tisgof continuousthen,2. Math Analysis Limits of Functions 14 of 36Proposition end iff if oneyEe tcontinuousisthru} fix)flxul.irE , I ,c ' →X ue q u i v a l e n t l y,o r⇐ l i m ( L i m Xu)(xu) ff Xu#Ifor=n n e w→ aProofif then1 isolatedE is point,a neventuallyIX u = E,accumulationI2- pointi f o fi s a nbyt h e n , t h e o re m ,i t sfig jetf i reflint fix) == by continuity(lima)f= u - s o2. Math Analysis Limits of Functions 15 of 36GutinuousfunctioA function f is continuous over an interval if it is continuous at every pointnsoninterveeletof the interval. IR, I:[a. Rb)b,b e r →e , Et h a ts u c h continuousj isTheorem ( e x i s t e d )A zero of a real-valued function f is a point c dom f at which the∈function vanishes. (discordant)fle) (b)l e t j c oFc b)l e , (c)t h a t ifsuchE - oEN-N.tn.- The)2. Math
Analysis Limits of Functions 16 of 36
Ideeostuet-proos@b' •¥ •2i f ' be' b't be t2 - 2 - bne nthe tin end@el 02 - =• •Lemme leu-11d u a l endif only is n oProof e n - l - ilif theire n → oleu-el#oe n - e lI on-lsuppose m i o othen n i le n2.
Math Analysis Limits of Functions 17 of 36
Proof f (b)consider the feel t s oo,c a s e(Otb)ji f1 t h e proof- o i scomplete atb(eth) b,:=f2- t oif e,:= e , (bi)fflail t oi o•= be • (ETI) atf,3- b,:-bif f s o e,:-, (bi)fle, If t oi o•= be • bnt oprocedurer e i t e r a t e t h e e n ,up(dustbin)fs u c h t h a t - othen t h e proof completeis2.
Math Analysis Limits of Functions 18 of 36
If twoconsider then o ti t t h e case,is t h e procedure,fromsentences a r i s e n{en} {bu}MONOTONICALLY MONOTONICALLYINCREASING DECREASING,{but{en}, bnbounded: be r e Ie t Eo nbul KQ u ' → ' →, Ibn-en)bu-linenl i mK - l ein= = =b¥-olim K e lby c o n t i n u i t y, bpInneuence(l)
- (linen)flimf(en)-jIo=Of signbpLuneuencej(K)(limb)but-flintelO±=Of signl-ftell(KIl e k, since fck)feel0 I I 0=by fill-fck l-osandwich2.
- Math Analysis Limits of Functions 19 of 36Corollary f ILet the function be continuous on the interval and suppose it admitsxnon-zero limits (finite or infinite) that are different in sign for tending toI f I fthe end-points of . Then has a zero in , which is unique if isI .strictly monotone onProof l a t end-pointsplI n d i c a t e by p It h eh , asEATENTfind. A H - l a fig. N x t - l p,Elpl ,suppose otby permanence signo fI t t a ) , 11×1t h e t oIpl,E I 'Tx s i x t oItch) I - I p land B> b ec-aa sc h o o s elie, IRb ] B IEe,I and j : →E continuousby fib)fleetconstruction =t oby t h e o r e m Z e r o se x i s t e n c e o fo n monotone)(sinceand i n s e c t i v i t y s t r i c t l y7- ! I t e x t - ot h a tX E such2.
- Math Analysis Limits of Functions 20 of 36Corollary IR Ee, B Ig : [ e . BIf ,
continuous→ o u(e) flbl glblif Cele e n dI Ig b)Fxthen l e , f t ) -Fx)t h e ts u c hEProof hlel-j (e)(el-gconsider t o4lb) ( b ) - g l b l t o- jUK) eeyeborebyc o n t i n u o u sh e e l 4lb)then t oby theorem ze ro se x i s t e n c e o fo nb)1- l e , t h a ts u c hx Eh a - f Ix) get-g-(x) texts o =2. Math Analysis Limits of Functions 21 of 36Corollary ( i n t e r m e d i a t e )depending t h e c a s eo nB I →I-Ie, interveelet t h a tsuchi Ib oot± eo o- IRIf : continuous→(int f )then, (I)f , fstep cNamely, the function f assumed all the values between its infinum and itssupremum r¥5 f# t o oµ i n # IR,2T)( 0 ,f :e. xX i a→ S i ug.. I ]- E l ,2T)l o ,fThe only rule in this kind of statements is ÷t¥¥.that when the domain of the function fis closed and bounded, the range is closedand bounded too. so:*.:*."- r t . .o r e .- #next]-lining,[ i n t f ]R e n j e f , s u p2. Math Analysis Limits of Functions 22 of 36Proof depending o
In the case I consider, I'll show that for any x, there exists a t such that F(c) is such by definition of infimum, F(x) is such by definition of supremum, F(x) is such - h defines C(h) as the function of x, if f is continuous, 1 is T(x, x), since g(x, F(c)).