Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Math Analysis Limits of Functions
F E E INh e m e l y , t h a tsuch h i n t an> oiifen ↳ - o o{on} e v e n t u a l l ythen, negativeisF E E INh e m e l y , t h a tsuch h i t # e u r oProof: bydefinitionofdivez.ge#ey-ueucei) IR,K E K isuppose oF rthen t h a t i n e n i ks u c h nif IR, KKE t osupposeFiithen Kt h a t i ns u c h eyeu2.
Theorem ( d o u b l e c o m p a r i s o u r s e u d w i "Faenarimen"Given {bn}{on},the sequences bne n dis o n et ot ie nthen, b n # t o (biffs)the t r u e o n e - 0soreiss a m eProofl e t k i o arbitraryDsince l , ttFa Kt h a t it,s u c h o n >n >b nsuppose I b n ,Fitz buzen252such T h e t n(Fritz)take it m e x= bnthen, Ki n Z e n >n divergenceby d e f i n i t i o n o f b u t t o2.
Theorem AO)( l i m i tThe limit of the sum of concordant divergent sequences, divergestowards infinity (positive or negative):b u ttoo,Qu ± o rthen, bncu Ie a t →= 0
Proof too)(consider i to nE Rlet K, a r b i t r a r ym1 since t o ote nFF, it,t h a ts u c h me n >u >bn2- since a t aFitz by>52t h a t K-ms u c h u >take (5,, 52)it m e x= h t tthen, k-mlb u ti n Cnu o u t=bn by definitioncu o ot= i ee a t divergenceofRemerke: buif a n d I n' →ooIa n ↳ must studiedbeCu bne a t= byc a s e c a s e2. Math Analysis Limits of Functions 37 of 65Theorem BO)( l i m i tThe limit of the sum of two sequences respectively divergent andconvergent, diverges towards infinity (positive or negative):IRkb u ttoo,Qu ' → Ethen, bncu Ie a t →= 0 0Proof too)( c o n s i d e r e n ↳ RKbn Esuppose ' →then, s i n c e a n # t oFit Kit e n >t h e ts u c h snthen c u bn t o o' →= te ,Coroleery{en}let boundedbe and{bn} be positively negativelyo rdivergentbn positivelycu en negativelyist= o rdivergent2. Math Analysis Limits of Functions 38 of 65Theorem @)( l i m i t e dThe limit of the product of divergent sequences,
diverges towards infinity (positive or negative):
- (concordant) bu too, on ± or then, bu - en → to oiifen
- (discordant) to' → en d but> I Nbuthen, cu - 0 0 → en
Proof:
-
consider bn to oi so n, let K s om, I then, suppose to oen → 75, du 475, isuch that m^2 - bn then, suppose to o→ Faz Ibu tsuch that it, n > M(T, E) take it mex= mi-EyCn-en-buthen, in In(n bn to o→ en.
-
consider bu t - on too, → let m so I then, suppose to oen → Fri bu tit, such that n > ml/2 - bn then, suppose o o→ KFa bu t - it, n > such that mL(T, 52) take it mex= -Eyi n.- but then, in nen. but K i e - o o(n cu-en-bue n.
Theorem BO)( limit edi) but R K i o, HQu → such that too, Ethen, bu - en → too if Rk K r obu t such that an # too, Ethen, bu - en → - oo Re ¥: bu tan # too, 0 studied be must then,
The limit of the ratio of a divergent sequence is zero.
H E Rbut>o n # t o oc u - B Ithen, ouQuProoslet arbitraryE s o a n d a n # t osupposet o os i n c e →1 e n ,- t o75, k' b e specifieda a n yt h a tsuch n > latersince K,2 - b u t t oE' b e specifiedIbn-KITFitz T h e tsuch laterE'butE'by K- K 5 tcomparisonE'tb y , kcu = \ -K'e n ( 2E - e l U'E' andK 2 kchoose == tKX2{µt#=cu-bye 7yd e=e n on-II.ICal by d e f i n i t i o n limitEr o f o→2.
Math Analysis Limits of Functions 42 of 65P-uetheth.IOsince en#O, t o be|leleuFit Especisiedi tt h a ts u c h u > leterKI t # E 'u h (I)"E" eekE'chose =the nitethen, e lentiei t - I t ] , turnfixing2.
Math Analysis Limits of Functions 43 of 65HierezchyofinfinitiesA sequence is said divergent if it tends to infinity (either positive ornegative). However, different divergent sequences may approach infinitywith different
speeds and an be classified by virtue of such property.
The behaviour of sequences diverging towards ∞ is analogous to those approaching ∞, which can be studied by using the algebra of limits.
The study of the hierarchy of infinities can turn out to be useful when dealing with indeterminate forms of the type:
{Xn} → ∞
{Yn} → ∞
where Xn ≠ Yn for all n ≥ N.
Consider a list of significant sequences diverging to infinity:
let {en} be a list of divergent positive sequences
then, list E+ = {Xn | Xn → ∞}
study different cases that may occur:
- if the limit of the sequence is 1, then the sequence is bounded
- if the limit of the sequence is > 1, then the sequence is unbounded
- if the limit of the sequence is < 1, then the sequence converges to 0
Leudeub yIn symbolsoften ¥10¥ # ↳then ⇐ o foIn#oby sandwich,2. Math Analysis Limits of Functions 47 of 65adf.ie. # III. → t oe uProoflet arbitrarye s ia "if 1 = 0 ,I IIby II0sandwich oeffI tu E N± o timesu-Eu2- e - e . r s # == ( h - 1 ) (h-2) I4 •. . . .¥2..... A¥.¥. I 0 . o= =eL -d I e - Aoee terms¥uby s a n d w i c h , o→,2. Math Analysis Limits of Functions 48 of 65' IntoLife, lim I e o ou!u # t oProof u¥±'T1¥ by sandwichit o ft o o ,II t u1 i l± o largeI 5fon a sufficientlyz w i t hn (u-l)(u-2)u! 1n . . .-