Anteprima
Vedrai una selezione di 8 pagine su 65
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 1 Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 2
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 6
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 11
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 16
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 21
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 26
Anteprima di 8 pagg. su 65.
Scarica il documento per vederlo tutto.
Math Analysis I - Limits of Functions Part 2 (Sequences) Pag. 31
1 su 65
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Math Analysis Limits of Functions

F E E INh e m e l y , t h a tsuch h i n t an> oiifen ↳ - o o{on} e v e n t u a l l ythen, negativeisF E E INh e m e l y , t h a tsuch h i t # e u r oProof: bydefinitionofdivez.ge#ey-ueucei) IR,K E K isuppose oF rthen t h a t i n e n i ks u c h nif IR, KKE t osupposeFiithen Kt h a t i ns u c h eyeu2.

Theorem ( d o u b l e c o m p a r i s o u r s e u d w i "Faenarimen"Given {bn}{on},the sequences bne n dis o n et ot ie nthen, b n # t o (biffs)the t r u e o n e - 0soreiss a m eProofl e t k i o arbitraryDsince l , ttFa Kt h a t it,s u c h o n >n >b nsuppose I b n ,Fitz buzen252such T h e t n(Fritz)take it m e x= bnthen, Ki n Z e n >n divergenceby d e f i n i t i o n o f b u t t o2.

Theorem AO)( l i m i tThe limit of the sum of concordant divergent sequences, divergestowards infinity (positive or negative):b u ttoo,Qu ± o rthen, bncu Ie a t →= 0

Proof too)(consider i to nE Rlet K, a r b i t r a r ym1 since t o ote nFF, it,t h a ts u c h me n >u >bn2- since a t aFitz by>52t h a t K-ms u c h u >take (5,, 52)it m e x= h t tthen, k-mlb u ti n Cnu o u t=bn by definitioncu o ot= i ee a t divergenceofRemerke: buif a n d I n' →ooIa n ↳ must studiedbeCu bne a t= byc a s e c a s e2. Math Analysis Limits of Functions 37 of 65Theorem BO)( l i m i tThe limit of the sum of two sequences respectively divergent andconvergent, diverges towards infinity (positive or negative):IRkb u ttoo,Qu ' → Ethen, bncu Ie a t →= 0 0Proof too)( c o n s i d e r e n ↳ RKbn Esuppose ' →then, s i n c e a n # t oFit Kit e n >t h e ts u c h snthen c u bn t o o' →= te ,Coroleery{en}let boundedbe and{bn} be positively negativelyo rdivergentbn positivelycu en negativelyist= o rdivergent2. Math Analysis Limits of Functions 38 of 65Theorem @)( l i m i t e dThe limit of the product of divergent sequences,

diverges towards infinity (positive or negative):

  1. (concordant) bu too, on ± or then, bu - en → to oiifen
  2. (discordant) to' → en d but> I Nbuthen, cu - 0 0 → en

Proof:

  1. consider bn to oi so n, let K s om, I then, suppose to oen → 75, du 475, isuch that m^2 - bn then, suppose to o→ Faz Ibu tsuch that it, n > M(T, E) take it mex= mi-EyCn-en-buthen, in In(n bn to o→ en.

  2. consider bu t - on too, → let m so I then, suppose to oen → Fri bu tit, such that n > ml/2 - bn then, suppose o o→ KFa bu t - it, n > such that mL(T, 52) take it mex= -Eyi n.- but then, in nen. but K i e - o o(n cu-en-bue n.

Theorem BO)( limit edi) but R K i o, HQu → such that too, Ethen, bu - en → too if Rk K r obu t such that an # too, Ethen, bu - en → - oo Re ¥: bu tan # too, 0 studied be must then,

bnc u - e n . byc a s e c a s eProofe) l e t K, arbitraryE os eventueeey1 ' → t o oe ns i n c e K' bet ok'Fit, 1N that n t hsuch outE specifiedlater1bn K then,I suppose ' → be{ t oFitz IN Ibn-Kleethat nines u c h specifiedE eaterxlvi,, viz)take i t - m e a n d 5n >by butE - K 5 Kcomparison E t 2K2¥ K'- Kchoose e n dE =¥ K'but d uend i¥. r d - kcu On. but= divergenceby d e f i n i t i o n c u tof t o2. Math Analysis Limits of Functions 40 of 65ii) let arbitraryende r e Kro eventually1 → t o oe ns i n c e K' bet o1Fit, k1N that n t hsuch e n >E specifiedlateribn k then,I suppose → be{ t oFitz IN (butK l e ethat vi.s u c h specifiedn >E eateri t - n e x t , _viz)take a n d 5n >by - E - K t-but-Et Kcomparison,2K't - k 2I 1KChoose = - e n d = -E t h 1 1 2 +1N t l - R '- b u t - a n d E n t -U 2 lK t kiCu-butC n - e n . - Kdivergenceby d e f i n i t i o n c u t - aof -2. Math Analysis Limits of(limitofther-retio)

The limit of the ratio of a divergent sequence is zero.

H E Rbut>o n # t o oc u - B Ithen, ouQuProoslet arbitraryE s o a n d a n # t osupposet o os i n c e →1 e n ,- t o75, k' b e specifieda a n yt h a tsuch n > latersince K,2 - b u t t oE' b e specifiedIbn-KITFitz T h e tsuch laterE'butE'by K- K 5 tcomparisonE'tb y , kcu = \ -K'e n ( 2E - e l U'E' andK 2 kchoose == tKX2{µt#=cu-bye 7yd e=e n on-II.ICal by d e f i n i t i o n limitEr o f o→2.

Math Analysis Limits of Functions 42 of 65P-uetheth.IOsince en#O, t o be|leleuFit Especisiedi tt h a ts u c h u > leterKI t # E 'u h (I)"E" eekE'chose =the nitethen, e lentiei t - I t ] , turnfixing2.

Math Analysis Limits of Functions 43 of 65HierezchyofinfinitiesA sequence is said divergent if it tends to infinity (either positive ornegative). However, different divergent sequences may approach infinitywith different

speeds and an be classified by virtue of such property.

The behaviour of sequences diverging towards ∞ is analogous to those approaching ∞, which can be studied by using the algebra of limits.

The study of the hierarchy of infinities can turn out to be useful when dealing with indeterminate forms of the type:

{Xn} → ∞

{Yn} → ∞

where Xn ≠ Yn for all n ≥ N.

Consider a list of significant sequences diverging to infinity:

let {en} be a list of divergent positive sequences

then, list E+ = {Xn | Xn → ∞}

study different cases that may occur:

  1. if the limit of the sequence is 1, then the sequence is bounded
  2. if the limit of the sequence is > 1, then the sequence is unbounded
  3. if the limit of the sequence is < 1, then the sequence converges to 0
i f i se r o0 ¥iii lion w h e r e b r oe .long, constantsu # t o o a r eulogyu-68¥logebtu#2.ee?jeI=eoofe.eoFab-logentloganthen, byob' →loggin2. Math Analysis Limits of Functions 45 of 65r Hitherto, sequences of the same class have been analysed: in the next pointsof the study, the comparison between different class sequences will be ucarried out. beenid ta> the>o neim ,F - om e t , Ilion 'o o=loosenn # t o by Lendauprovable m e a n s o f symbols2. Math Analysis Limits of Functions 46 of 65if 1 = 0lim faro, t o > 1uh i m t o o ene t oi tu pProofl e t end arbitrary1a s2 7 0 ¥ IntLI by O fo r s a n d w i c h' →if L tu EIN&>1 oIII# fez2- n ' au±n"BY I N D U CT I O N en)(sinceH e e IRif I ± ou"if eu± (4+1/24e"" ±INDUCTIVE s t e piii) (htt)"d . ±e (uh)"logene log Keogluti)± htt'se eh t t i tsince n # t ologfuti)I# t ois possible assumeRHS-GynandLHS-nbegan

Leudeub yIn symbolsoften ¥10¥ # ↳then ⇐ o foIn#oby sandwich,2. Math Analysis Limits of Functions 47 of 65adf.ie. # III. → t oe uProoflet arbitrarye s ia "if 1 = 0 ,I IIby II0sandwich oeffI tu E N± o timesu-Eu2- e - e . r s # == ( h - 1 ) (h-2) I4 •. . . .¥2..... A¥.¥. I 0 . o= =eL -d I e - Aoee terms¥uby s a n d w i c h , o→,2. Math Analysis Limits of Functions 48 of 65' IntoLife, lim I e o ou!u # t oProof u¥±'T1¥ by sandwichit o ft o o ,II t u1 i l± o largeI 5fon a sufficientlyz w i t hn (u-l)(u-2)u! 1n . . .-

Dettagli
Publisher
A.A. 2019-2020
65 pagine
SSD Scienze matematiche e informatiche MAT/05 Analisi matematica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher alecabodi di informazioni apprese con la frequenza delle lezioni di Mathematical Analysis I e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Torino o del prof Adami Riccardo.