Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Math Analysis Limits of Functions
Itake O - E Ix-El-O-EI l elsiux-Siu2. Math Analysis Limits of Functions 7 of 41Limitofconvezgentfunctionsfortt112E boundedn o t upperc pi t o }hE ic HeRlthen, Lim fan is s oE=X t o Ital-elseF I IE t h a t x >sucheLimitofconvezgentfunctionsfortt112E lower boundedn o tc pi l - o }E ic HERlthen, Lim fan isE= s ox - a Ifk) - f l e eF I IE t h a t x esuchc-I t possiblenot account thet a k e intot oi s Ix-Ile es since E - t ao r xexpression a INDETERMINATE)(oo-• FORM2. Math Analysis Limits of Functions 8 of 41Limit divergent f u n c t i o n sofPositivelydivergentR,E RE f :IE, EC E →him fix) ift o o=I× →FM FotoR t h a tsuchE far)>Ix-Elt ME, oo r× eForestapi ( n o t{ to }E bounded 1u p p e rc i Limthen, t h e Ri ffelt t o oX t o o→F i re IE that Te x t >X > Ms u c hF o r tpi fo} (not bounded)E lowerc i Limthen, t h e Ri tfelt t oN-FREE Ithat Te x t >X i Ms u c h2. Math Analysis Limits of Functions 9 of 41NegetivelydivergentIR, RE IE, f:E E Ec
Analysis Limits of Functions 10 of 41 Topology Neighbourhoods Let the NEIGHBOURHOOD SPHERICAL E of radius the set is (XER o) III. E-d) s i x e x t -- (E-O, E t o )= xxt . i e I t oI - 0 Definition R IRV - Let x. A neighbourhood of x is any subset of that contains a spherical neighbourhood of x, with radius greater or lesser than . - Each spherical neighbourhood is a subset of the neighbourhoods with greater radius and contains those with a lesser one. f',Xto'x-d' J(E) UI I I. ol c d > XtoX-8 for os o m eo By changing a family of neighbourhoods is obtained. {VUe- I E}, IR V i s neighbourhood o facUx said OfFA M I LY NEIGHBOURHOODS Iis O FAnalysis Limits of Functions 11 of 41
Reeki) An arbitrary union of neighbourhoods of x is a neighbourhood of x .- -I, ÷ )t-t. ill-l, Ellee . g. -if -An arbitrary intersection of neighbourhoods of x is not aneighbourhood of x .-D f u rI-t.nl-lo}up,e . g.However a finite intersection of neighbourhoods is still aneighbourhood.
Definitioni) RV c saids e t i se eNEIGHBOURHOOD O F i tift - contains a( I , too)half kindl i n e theof÷rife RV c saids e t i s eNEIGHBOURHOOD O F - - i tif contains aI)to,half kindl i n e theof÷2.
Math Analysis Limits of Functions 12 of 41
Accumulation ( t o p o l o g i c a l )p o i n tlet R, AC C U M U L AT I O NE POINTE saidis e uCOf E ifHVE f{I}U n E tUt fQu!tion: E Uhow many points of fall in a given neighbourhood of x, ?=Answer: infinitely many!Reineck The concept of limit is a local notion, as it depends only on thebehaviour of the function f in a neighbourhood of x , and it is-therefore insensitive to what happens far from x .
Initio2. Math
(topological definition)
Let I, E, and F be sets. A function f : I → F is said to have a limit L at a point x if for every neighborhood V of L, there exists a neighborhood U of x such that for all t in U - {x}, f(t) is in V. Equivalently, f has a limit L at a point x if the image of every neighborhood of x under f is eventually contained in every neighborhood of L.
(REDUCTION OF LIMITS THROUGH SEQUENCES)
Let I, R, E be sets, and let f : I → R be a function. Then, f has a limit L if and only if for every sequence {Xn} in I that converges to x, the sequence {f(Xn)} converges to L.
(by contradiction)
Assume, by definition, that the limit of f at x is L. Let V be a neighborhood of L. Then, there exists a neighborhood U of x such that for all t in U - {x}, f(t) is in V. Consider a sequence {Xn} in I that converges to x.
text =l - l 'then,Proof {Xu} {II, IEconsider XuE ' →ltex tfiff =L,sincethen lf k n )by LT S , A=L',tex tfixsince l'then f k n )by LT S , i tby l i m i t sequences,ofo fu n i q u e n e s st e l l2. Math Analysis Limits of Functions 18 of 41-µt+ t oX1 × 1:s i g ne . g. If}Limo s i g n a len-ut (en)o s i g n ti I 1→=but-Into (bn) - 1s i g n →= - I(en)l i m ( b u tF l i ms i n c e sign (x)Liontheir does existn o tsign by LT S2. Math Analysis Limits of Functions 19 of 41Theorem ( p e ¥ # u 1tiff F V Elfly UE t h a tsuchoi=the ht},U n E t SCH> oProof Effsince fix) - l theF V E {El,U nUE E lt h a ts u c hl - E h tTCH i Ett a k e E - l L t lfaitl - l e 2 Lf (x) To rthen, furl t oCorkeryf(x)> in neighbourhood Eo faothen, fizz tiff fatsoit far) e x i s t s2. Math Analysis Limits of Functions 20 of 41Theorem ( d o u b l e c o m p e z i )IR,E JEIc E ,Rf, Eh : → t u e tsuchg,Vx (x)f (x)(x) hE,locally I IE g Rlif l i m 41×1 Cx)limy
E==textfine = LProof {Xu} belet arbitrary sequencea n{Xu} LE},E lt h a t Is u c h E X u →(Xu) (Xu)flku) 4by I Iassumption gfl e l(Xu)by h i s tby d o u b l e comparison o f sequencesw ethat LIE f (x) - l2t h e n , by i t s2. Math Analysis Limits of Functions 21 of 41(comparison)Theoremi) SEQUENCES Xu X u # t oYulet It oya → ,Prot t oYu → ,75 KFk> Yu>such t h a t ita >o , KXu XuI sYu → t o oii) FUNCTIONSIR, R,Elet AE,f : Ec E Eg, →lim fa r ) t o=Ix → Vx fizz 8 1 4 - tfly get EI E •Proof {E)E lXu IE Xu →,by f (xu)L T S , t o oi t galyardf e n l e T H E I t oby double girl#tooc o m p a r i s o n ,2. Math Analysis Limits of Functions 22 of 41Remerkeblefunctiousies thed i r e c t continuityofc o n s e n t i e n c eelementary f u n c t i o n s ,of t h e i rbehaviour e a s i l y X # I .defined forisThen, f)(a IRfiff x" I → , doinE EE=o . ,IR( e e f)e x - e t , doinfix E E,o
..fi#eogex=eoset.fEEo1mIY-o.eimsiux--siux ( F e d o m f ),I→x t r u e f o rs u c h properties a r eall elementaryt h e functions2. Math Analysis Limits of Functions 23 of 41Remerkebeelimitsefiygsi.IQ1 f#±i:÷÷::::::.÷:b-h-IDef's Iz1. s i n x .== IDOE, t e n X .