Anteprima
Vedrai una selezione di 7 pagine su 29
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 1 Fisica generale - Meccanica e conservazione della quantità di moto Pag. 2
Anteprima di 7 pagg. su 29.
Scarica il documento per vederlo tutto.
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 6
Anteprima di 7 pagg. su 29.
Scarica il documento per vederlo tutto.
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 11
Anteprima di 7 pagg. su 29.
Scarica il documento per vederlo tutto.
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 16
Anteprima di 7 pagg. su 29.
Scarica il documento per vederlo tutto.
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 21
Anteprima di 7 pagg. su 29.
Scarica il documento per vederlo tutto.
Fisica generale - Meccanica e conservazione della quantità di moto Pag. 26
1 su 29
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

I p M L T

Occore notare che l’impulso non è una proprietà del punto materiale

ma è una quantità che misura l

l’entità

entità della variazione della quantità

di moto per effetto di una forza esterna. Quindi, quando si imprime

un impulso ad un punto materiale, ciò significa che una certa

quantità

q di moto viene trasferita da un agente

g esterno ad un p

punto

materiale o viceversa. Per questo motivo spesso la parola “impulso”

viene usata come sinonimo di quantità di moto.

Poichè in generale la forza varia con il tempo come mostrato in

fig

fig.(a),

(a) è conveniente definire una forza media (media temporale)

 

1 t

 

f dove .

dt t = t - t

F F

MEDIA f i

 t t i

  

 t

Si può quindi scrivere     

f dt t

I p F F

MEDIA

t i

Questa forza media, indicata in fig.(b), può essere immaginata come la forza

costante che, nell’intervallo di tempo imprimerebbe al punto materiale lo stesso

t,

impulso impresso dalla forza variabile che, se nota in funzione del tempo, in linea di

principio, permetterebbe di calcolare l’impulso.

MECCANICA

Quantità di Moto e Impulso (III)

Il calcolo è particolarmente semplice se la forza che agisce sul punto materiale è

 

costante. In questo caso e quindi

F F

MEDIA  

    t

I p F approssimazione impulsiva

In molte situazioni reali si adopera la cosiddetta nella quale

Si assume che una delle forze agenti sul punto materiale agisca per un breve

intervallo di tempo ma sia molto più intensa di tutte le altre forze agenti.

Questa approssimazione è molto utile nello studio degli urti, cioè quando la durata

forza impulsiva

dell’interazione è molto breve e, in questo caso, la forza è detta .

Per esempio

p q

quando una p

palla da g

golf viene colpita

p dalla mazza la durata dell’impulso

p è

dell’ordine di e la forza media esercitata dalla mazza durante questo intervallo

4

10 s

di tempo è tipicamente 4 ordini di grandezza più grande del peso della palla. La forza

di gravità quindi può essere trascurata e l’approssimazione impulsiva è giustificata.

MECCANICA

Quantità di Moto e Impulso (IV)

Esempio – Pallina da golf

Un giocatore colpisce una pallina da golf con l’apposita

mazza. Se la pallina ha una massa e raggio

m = 45 g r = 2,0 cm

e se è noto che con una tipica mazza si ottiene mediamente

una gittata di circa , assumendo che la pallina si

R 190 m

stacchi da terra con un angolo rispetto al piano

 0

= 13

orizzontale, si possono fare le seguenti stime per

a)

) Intensità

à dell’impulso

d ll’ l

l’impulso è pari alla variazione della Quantità di Moto

I

della pallina

t p

I = F =

x media x x

L

La pallina

ll nella

ll posizione prima e dopo

d l’

l’urto con la

l mazza

è rappresentata nella figura a fianco. Se è la velocità

v

0

della pallina quando lascia la mazza, .

p = mv

x 0

può essere valutata dall’equazione per la gittata di un proiettile per cui

R

v

0 

2

2 2

190 m 9

,

81 m/s m m

v

v Rg

             

f 0

sen 2 θ sen 2 θ 65

, 2 I p 0

,

045 kg 65

, 2 2

,

9 N s

R v mv

0 0 0 0

0 x x

sen 2 θ sen 26 s s

g g 0

b) Durata dell’ urto t

Se si considera che

h la

l pallina

ll durante il

l contatto con la

l mazza ha

h una velocità

l à media e

v /2

0

che si può stimare che resti a contatto della mazza per un percorso per cui

x = r = 2,0 cm

  

2 2 0

,

02 m

x x 

      4

6

,

1 10 s

t m

v v 65

, 2

0 s

c) Intensità della forza media

I 2

,

9 N s

  

F 4

,

8 kN

x

media 

  4

6

,

1 10 s

t MECCANICA

Conservazione della Quantità di Moto (I)

Sistema di due Punti Materiali

Dati due punti materiali che interagiscono fra loro ma che sono isolati dall’ambiente

esterno, cioè due punti materiali che esercitano forze uno sull’altro ma che non

risentono di alcuna forza esterna).

Si supponga che, ad un certo istante , la quantità di moto del

t

 

punto materiale sia e quella del punto materiale sia .

1 2

p p

1 2

Applicando la II Legge di Newton a ciascun punto materiale si

ottiene:

tti  

 

d d

p p

 1 2

F F

21 12

dt dt

dove è la forza agente sul punto materiale (esercitata dal

1

F 

21

punto

t materiale

m t i l ) e è la

l forza

f agente

t sul

l punto

t materiale

m t i l

2 2

F

12

(esercitata dal punto materiale ). Per la III Legge di Newton

1

(indipendentemente dalla natura – gravitazionale, elettrica etc.-

 

gioco)

g ) e devono essere uguali

g in modulo e

delle forze in F F 

12 21

direzione ma di verso opposto e cioè formare una coppia di azione e reazione  

F F

12 21

Questa condizione può essere scritta

 

  0

F F

21 12

  

d d d  

 

p p quantità di moto totale del

o anche e definita  

    ( )

1 2 ( ) 0 P p p

p p 

1 2

1 2

dt dt dt  d d

   

P

sistema

, è evidente che deve essere dato che

     

( ) costante ( ) 0

P p p p p

1 2 1 2

dt dt

Il fatto che la quantità di moto totale del sistema di due punti materiali interagenti

resti costante costituisce il Principio di Conservazione della Quantità di Moto

MECCANICA

Conservazione della Quantità di Moto (II)

Sistema di due o più Punti Materiali

  

L’equazione vettoriale è equivalente a tre equazioni scalari . Ciò

  

( ) costante

P p p

1 2 le

significa che essa, scomposta nelle sue tre componenti, esprime il fatto che

quantità di moto nelle tre direzioni , si conservano indipendentemente cioè

x,

x y z

  

P P , P P , P P

i f i f i f

x x y y z z

Conservazione della quantità di moto

Questa è la legge di che si può esprimere come

Se due punti materiali di masse e formano un sistema isolato, la

m m

1 2

quantità di moto totale del sistema si conserva,

conserva qualunque sia il tipo di

forze di interazione (purchè queste obbediscano alla III Legge di Newton).

Più semplicemente, nell’urto di due punti materiali la quantità di moto

totale si conserva, purchè questi costituiscano un sistema isolato.

  

L’equazione vettoriale applicata al sistema costituito dai punti

  

( ) costante

P p p    

1 2

materiali e con velocità iniziali e e velocità ad un istante successivo e

1 2 v v v v

1

i 2 i 1 f 2 f

conservazione della quantità

à di moto totale

permette di esprimere la di questo

   

isolato

sistema nella forma   

m v m v m v m v

1 1

i 2 2 i 1 1 f 2 2 f

   

  

p p p p

1

i 2 i 1 f 2 f

isolato uguale a quella iniziale

cioè la quantità di moto di un sistema è sempre

MECCANICA

Conservazione della Quantità di Moto (III)

Sistema di due o più Punti Materiali

Come vedremo più avanti il Principio di Conservazione della Quantità di Moto è valido

qualsivoglia grande

non solo per un sistema di due punti materiali ma per un sistema di

isolato

punti materiali purchè e in cui le forze fra tutte le coppie di particelle

soddisfino la III Legge

gg di Newton.

Poichè il Principio di Conservazione della Quantità di Moto richiede che il sistema

sia isolato, ne consegue che le sole forze che agiscono sui punti materiali sono

interne al

l sistema e cioè

è si tratta delle

d ll coppie di

d azione-reazione fra

f i punti.

Quindi, in assenza di forze esterne, la quantità di moto totale di un sistema isolato

la conservazione della quantità di moto totale di un sistema è un

è costante e quindi

altro modo per esprimere la terza legge di Newton

, del tutto equivalente,

equivalente .

La legge di conservazione della quantità di moto è considerata una delle leggi più

energia meccanica conserva solo

importanti della meccanica. Infatti l’ si quando le

f

forze conservative

i quantità

i à di moto

agenti

i su un sistema

i i

isolato

l sono mentre la

l

totale di un sistema isolato si conserva

, costituito da due o più punti materiali,

sempre qualunque sia la natura delle forze interne

, .

MECCANICA

Conservazione della Quantità di Moto (IV) - Problemi di Urto (I)

Il Principio di Conservazione della Quantità di Moto è molto utile nell

nell’analisi

analisi dei

problemi d’urto fra due punti materiali, ovvero oggetti assimilabili a tali.

urto

Con il termine si indica l’evento in cui due punti materiali si avvicinano per un

forze di tipo

p impulsivo

p che si

breve intervallo di tempo

p e interagiscono

g tramite

assumono essere molto più intense di tutte le forze esterne

.

Pertanto si considera che i punti materiali che partecipano all’urto costituiscono nel

sistema isolato sempre

loro complesso un e quindi in un urto si conserva la quantità di

moto.

moto

Nel caso macroscopico un urto è il risultato di un contatto fisico fra due oggetti come

può avvenire fra due palle da biliardo (v. Figura).

Quando due punti materiali di massa e si urtano,

urtano le forze impulsive

m m

1 2

possono variare nel tempo in un modo complicato descritto qualitativamente

in figura.

Dettagli
Publisher
A.A. 2012-2013
29 pagine
SSD Scienze fisiche FIS/01 Fisica sperimentale

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Muaty91 di informazioni apprese con la frequenza delle lezioni di Fisica generale e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli studi di Genova o del prof Galleani Enrico.