vuoi
o PayPal
tutte le volte che vuoi
1A)
limn→∞ n • ln(n+1/n+2) = forma ind. 0 • ∞
limn→∞ ln(n+1/n+2) = forma ind [∞/∞]
1/n ((n+2)-(n+1)/(n+2)2)
- limn→∞ n+2/n+1 • (-1/n2)
- limn→∞ n+2/n+2 - (n+1)/(n+2)2 /n+1 • -1/n2
- limn→∞ 1 - n+1/n+2 • -n2
- limn→∞ n+2-(n+1)/n+2 • n+2/n+1 • -n2
- limn→∞ 1/n2 1/n+2 • n+1 • -n2
- limn→∞ -1/n2/(n2+2n+n+2)
- limn→∞ n2/n2+3n+2
- limn→∞ n2(-1)/n2(1+3/n/2/n+2/n2) • -1