Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
FB be shoppingBt p B.M andarMTHEOREM B. 2For a.am s: t= .. + . ., ,, )( Etcthe filtrati delett Itfine Yz IndependentThen Beta Ba and isis B.we Mamcanon - -= ...Frof . ( () a)a)( Bs B=p!reflections tantthe !!P eprincipale a.a= ,: +oProf : a)a)( ( {Planet ) ){}et PlanetBz Platea}=P )et BttpBt rt BraTa BeeTa lae te e ae =., , ,) )( PlenaBt Bea et where WeWtet Bttra BeaTa 0e- eo= -: =ea, .,-Wt Feo ollaBy )theorem Wthe Brownianiisshopping motionra e e- a , ..( Elio ))) ( Rtproperties WrsolingthebyW Then .ttW W Rtra ra za rvw - x-i - . ,. ,,() )) a)(PlenaPlena t.ro( Bea=P =pVera et Bt BtVI. etetet TaTa eeo e-=, , ,,⇐ ))) Platea tpltaettPlBteaIiz@DefiAnlRFvaluedpsocessBilr.F.lFHa)(( Bta)) tipicaIra Bt=PIaIT' Bteat.bz etetTa =e ea. ,e , )( Bet p alis ifdimensioni B. Ma m - :. ., )() It1) Bo )Bz Bsis Na) BsBt o It0 a. srs s -- .-= . )( })HttRemarks ( { BmltrealF }withBK '{pBritt Battir and Mhe 1 are B.: m: .= ,. , . . .. ..)( t EMore Bkcontinuano continuanot Bisindependent Bt
Bstover Kirin areis iare -. ,Let te definedonlr.INX Ireal integrale 0v.v Ea . ,, .Def ECHOTheorem )the al of denotedand condition 0 theexpedition w.r.to equivalenteX is: ,(class of )St Z uniquehis exists isandz :. measurablew.at) integrale' Z is1integrale so1) measurabeed- and7 . ,! EfzwEIXW! ) )il faf2) positive boundedandzdpxdp euey@de == mcasuraller.ir0Prof W- .: !te fordpD) the (B)consideri positive ×and @X Beevery con qEXISTENCE mcasureassume° eo :: = ., )( iflg QlatabsoluteOlrviously thenmsn.at Plateacontinuois P 0q arrp ⇐ =. .The theorem thatRadon integralestates then mcasuralleNinodym exists real zs.tod- rva :- .fgxdp ! ECXIO )lancezdp Note then finiteintegraleand if(B) thatZ andq Xe isis q== .integraleisz . { trefgzadp{ ⑤Zàtrdp{that oxdpmcasuraller.us zadpst =d.zaUNIQUE suppose° ZNess =are: : =, ., { !Define {the event d' xdp{ } xdpIIOveredD= 0za a =a : _> = .. 0>(d)Become thatinnpliesthis Zzaio a.zpZ sZs is dso ,on- , . .!Dcfine {
Over} dpti ti Me ) a.E Zz zazaed soe ezs o-> : = =: i ..Then DotZa Z a. s= , . *{ ! ElxwElzw ) tiri formifz.EE the ofXdlp] ]relation Video the WiWla zdlp ftp.aeso Of:= . .oflinea functionfold forthen bybasealso combinati indicata approssimatistandard* and cveryCours Omse ons s ,)( fa Wmeasarabletonsillepositive 0results don v.v.com euey. - . ., ,ELIO ) TheProp Elf lineaconditionl' (d)) al continuareexpeditionwith Pes is a→:: .ENDX I1- l' with hasitoperator 'eover→ pas more norm;contrattiiti. onise a.EHI D) 'XELPProf lWe consideri e: . functionimequality withtoappliedBy the hipJensen fivespasconvex Hx :.( ]l' 'letto ) lo thattxt#e so :)) Ef ECHI)l finita'Eflefxio )) # tuA ee = .El d) linearhave thatofBy Ipointit isprop mapprevionse a.we. È )È( ECHO )Elxnl a)It fat3) havecontinuano inis in× we :Jensenè ))) elettuario .HNEftelxnlo EllaEtna) ') l o.- ) ElEttelxld ")4) "It =LIIcontrazioni e anniis sura
Il Xlllp µa=Freezing lemma thedet( ) takingmeasuralle valereGiof. Def measuralleleP g. D-X inr v.va: .;, ., function( E) lftmcasuralleY E )YLXthe l'g-Exr stspiace is⑤IR luiande. nonmapan w→: . ,("( )id )ELUICX "→ "d) rEfylxtolti to)) .il withHAwhereThen e- R→:= ., = .)( (Prop ( FttIt ?Fett BehF. B. M rtpr is a v. ;. . .. E. ,, )Efh )Efllbtlist( )Prof Et bounded Bdti Bscontinuarsi BtV. andBi esetB e- =: -- -, .that Età EstBttLove *BsWe ?-i ;; + )Efhl Efhl:))Eth) (test;)Bse BstBetaBet Bs? lo )Be Bs- -= tnn=: - N.rs s-; -. ;. + ,+by lheorensLebesgue :( )Efl) )! [test list;)ll ll( )Now limit )EBsline Bs testthe Betake BtBtBeta Bs Bs DEI=we - - --: , .com →) ÈteÈCorollari ( filtratorilieti with ?( f. motion theBrowniani( standardBeh p isr is a=: ,. , )right Vt Ioncontinuano and- ) )( (legale Beh holdsProp (Ge ifE Brownianop natural motion thatetBswithr iso ao es: , :=, , ,IttÀ1) -- )) ((tfttt g-Beh( P standard
Brownian motion is a continuous-time stochastic process M(t) with the following properties:
- M(0) = 0
- M(t) is normally distributed with mean 0 and variance t
- M(t) - M(s) is normally distributed with mean 0 and variance t-s for s < t
- M(t) is a martingale
- M(t) is a submartingale
- M(t) is a supermartingale
If M(t) is a martingale, then the expected value of M(t) given the information up to time s is equal to M(s) for all s < t.
If M(t) is a submartingale, then the expected value of M(t) given the information up to time s is greater than or equal to M(s) for all s < t.
If M(t) is a supermartingale, then the expected value of M(t) given the information up to time s is less than or equal to M(s) for all s < t.
If M(t) is a martingale and f is a convex function, then the integral of f(M(t)) with respect to t is a martingale.
If M(t) is a submartingale and f is a convex function, then the integral of f(M(t)) with respect to t is increasing.
If M(t) is a supermartingale and f is a convex function, then the integral of f(M(t)) with respect to t is decreasing.
If M(t) is a martingale and f is a convex function, then the integral of f(M(t)) with respect to t is a submartingale.
11lo Jensensulimcreosimf martingale+(Def Matt ' l'martingale V.if Me tebe withlsocial toa Pie tin Eis: !l' (Remonh' If 1Mt submartinfale? martingale 11 liMslllpandIMH Mettein isis aa: e)ELIMHPITheDef boevnded1MHzmartingale be iftosocial in II. eis tu:IMAximallneaualities-iletM.la- )1) )lett(( lelett supermartinga.laright continuanopMattF aa, , .,.Then Vt 1 0io > :, Etnoteam "a) a):#! Itii( (!÷ ee -* ⑦e e• .IDOOR.is/neauA:letM=lr.F ) ll right boundld2) ( [lett martingalePMatt continuano in Poia -, ,. ,-: IMHMlet Thenand :[f :.p*a) (M e )( )HIM")) ÷Eff ("È Ib) http IMHHttp" :[:% ee ¥ ! )Def !family figo ' dp!uniforme !ofa aldimension integrale if !d is 0r.v.is =: - e)Ellxltt )( famigliaallattx