vuoi
o PayPal
tutte le volte che vuoi
∫(x⁸ + 4x⁻³ - 2cosx + 3x⁵)dx = ∫x⁸dx + ∫4x⁻³dx + ∫-2cosxdx + ∫3x⁵dx
= x⁹/9 + 4x⁻²/-2 - 2senx + 3x⁶/6
-4 - x⁴ ≥ 0 => x⁶ ≤ -4
∫(8x³ + 4x⁻³ + 2x⁻⁴ - cos(1/3x))dx =
= [2x⁴/4 + 4x⁻²/-2 + 2x⁻³/-3 - sen(1/3x)]2
= x⁴/2 - 2x⁻² - 2/3 x⁻³ - 3/4 sen(1/3x)
∫ x3e-xdx = x4g(x) - (x4/4)(-e-x)
∫ e3xdx = (3e3x)/3 = e3x
∫ e4xdx = e4x/4
∫ e3xdx = ex/g
∫ e7xdx = e-7x/-7
= -x3e-x + 3 ∫ x3e-xdx =
= -x3e-x + 3 [x e-x/ -1 - ∫ 2x e-x/ -1 dx] =
= -x3e-x + 3 [-x2e-x + 2 ∫ x e-xdx] =
= -x3e-x - 3x2e-x + 6 ∫ x e-xdx =
= -x3e-x - 3x2e-x + 6 (-x e-x - e-x)
∫ x2e-xdx = x2e-x - 2∫ x e-xdx =
∫ x e-xdx = x e-x/ -∫ 1 e-x/ -2 dx =
= -x2e-x + 2 ∫ x e-xdx
= - x e-x + e-xdx = -x e-x - e-x
f(x) = 4x3 - 3x
X = ℝ
∫(4x3 - 3x) dx = x4 - 3/2 x2
limx→+∞ (4x3 - 3x) = +∞
m = limx→+∞ (4x3 - 3x) / x = limx→+∞ (4x2 - 3) = +∞
4x3 - 3x > 0
x (4x2 - 3) > 0
4x2 - 3 = 0 ⟹ x2 = 3/4 ⟹ x = ± √3/2
x > 0
4x2 - 3 > 0
x < -√3/2 or x > √3/2