vuoi
o PayPal
tutte le volte che vuoi
Lezione 9
Bisogna ora andare a vedere la geometria del dorso del cucchiaio: viene fatto questo perché la pala, nel suo primo ingresso con il getto, anima e con esso interagisce.
Le particelle che non sono intercettate dalla pala hanno una loro traiettoria che sono risultante tangenti al vettore velocità relativa. È evidente che se questo vettore di velocità relativa è totalmente disgiaciato dalla geometria del dorso, abbiamo un'alta efficienza ma anche frenante sulla pala.
Fig. 9.1: geometria frontale del cucchiaio
Nella figura 9.1 non a caso è stato disegnato il getto: è stato riportato il getto relativo alla portata massima ammissibile.
Questo getto viene diviso in piani paralleli, in modo da ottenere delle particelle che corrispondano all'intersezione tra superficie esterna del getto e questi piani.
I piani vengono indicati con i numeri I, II, III ecc. e tra essi sono equidistanti: piu' piccolo è l'intervallo maggiore sono le sezioni e migliore è la geometria delle palette.
Fatto ciò posso capire anche l'ordine con il quale i filetti fluidi entrano in presa con la geometria dell'intaglio.
L'obiettivo è allora duplice:
- geometria del dorso al fine di avere minore interazione getto-pala e quindi urti minimi
- ordine con il quale le particelle interagiscono con la superficie d'impatto, facendo sì che la punta dell’
I piani di traccia I II III IV V B permettono di ottenere le tracce del profilo inferiore della palè detta anche profilo attivo, in corrispondenza dei profili delle sezioni palè 1, 2, 3 etc. in riferimento alla figura 9.1
Fatto ciò ho a disposizione il profilo attivo e devo andare a disegnare il dente della paletta per questo mi serve la traiettoria relativa del componente 。
TRAETTORIA RELATIVA DEL GETTO
u1 = 0.4878
c =
Fig. 9.2: traiettoria relativa del getto
50
I'm unable to transcribe the text from the image directly. Could you provide clearer details or specific sections you're interested in?