Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
BIHIBHIDAl ><> (< metodovedi )= variazionale esempioxAl HIB BIHID> < >< = f| fra INBI quindiDI Asemplificazione normaliOrtoBs < sono>< e 0e: =↓ stato eccitatodel primoKlee Ìl'prodotto 18 dellfaperché auto28di sono )eIdrogeno ortouor malicheude sonoI1 152 S1521 SiSi 0< = dipe 1s culo mblanotermine↓E di 2s l'stato fondamentale nell'entrambi la tragli Iiiqui altroerano repulsionee- 1s esprime uno 1sin e: ,nel 2s 4-Uilm () )hiP terminiconsidero Hdi ortogonaliHa perché sonoscompaiono epoi e: , %/ " IY YiYi ImHa () )tra ) Ha ri)( >+p mari +< ,= 4- Irafilm Ira Yilrr4- /) / )Ha) ) >< =↓ solo tiAgisce tu% 4JYi il( /) Yilrrtra )Eri ) )IN< =4-Hilal 14(E il) re )n< >-, I 2511 ) 0 flx(1)1s trasullo↳ tono> ) atomiche normalidue< perchè ottostessoho e- sonoe= IlilB scambiodel Orbitale dicontributo terminesoloper sopravvive→ = termineilnell'
secondoperòelettronica che trovalìditermineprimo nelsi per2s1s eip e: ;importanticlassicoequivalente hahaNon conseguenzemaun , PÌUna simmetrica rispettojlx anti) simmetrica aunae a↓ hanno stesseiannulla coordinatedue lequandoquando ti re ovverosi e-= ,,spazialmentecoincidono4- due posto sistesso simmetricaper- e- lo Inoccupare quellapossononon ei ;possibilità dila trovartiincrementa così14tendonoche Y dievitarsi di piùe- aoccupano . 7l' descrittoY interazione forte dapiù delloè statorepulsivain→ , JiE YE il flxKiperché E )i la±Torna segno++ ⊖ per> ]=± ], , .4Ji destabilizzatakij di kisiccome interazioneè percherepulsione hasonosia meno persoe ]] →il segno -0destabilizza dispariflxkit di)le quellepiù parisullo ugualiNera sono0 Y Yt havedo doveche 0 UN MAX=. ,↓questo chiama PO FERMI2- 2- DIOsi delle verifichila perchécaricheè sipresenzanecessarianon
Il testo formattato con i tag HTML sarebbe il seguente:bidimensionalekn modocollegamento scatola separatonellae-con 412 421definito similimoltocheavevamo e sono flx flyflxcoordinate èogniscambiare )anchele ))posso solo× oy see41424214h14 () ( ) )42 4) X y=;= deldegeneri simmetricheQueste sistemasimmetriche fa nostroantidue LombE autoerano )oin → →. discambio coordinaterispetto alloQuella anti lungo rettasimm annullavasi la y✗ =.abbiamoQui situa Analoga2- .Parallelismo scatola gradinocon e IGpiù efficaciperturbazione tipo) panisu n 1cone =↓ metàriflessione dellarispetto all' scatoladi cheasse passaoperazione apercambiadispari perchèn 2 segno= pari3n =JHDestabilizza disparilapiù di) pani quella flxdestabilizza di piùla leQui pari)repulsione e-e- _ l'dello perturbazionedeterminala stato efficaciasimmetria dellameccanismo comune→ :Riassunto 4-stati 4possibilidue eccitati 152screato hoHO perchèeISIS 1 è 1s e unoine in 2s: + -possibili
vedereaspettavanosi %④sull' cosoQuesto FatomoF " µla che angolareperché di " niagisce MOM - =. qÉ↳oU} enteModulo mo il B applicatobendel B☐letutte dimensionipuòNel classicocaso µ assumere ho soluzionil possibililemacchie3 per1se 1con 3= → 42il divide duefasciovedono chel solo 21macchie potevase LO tiessere perinsi →= → c' il Magneticocapiscono angolare dialtroche cuiè Angolare MOMsi associava MOMaMOM spinun →.. .↓le valloniproiezioni posso avereSlllllilltllliLui intero nteroselmi infattipoteva essere un o un' orbitaleollareper AllaMOM . angolareè le proprietauni dihoNon cuiequiv maClassico neassociamoAllegarenom MOMun a ^.. .,definiscono autovalorifaautodile )propr e.proprietà commutazionecicliche cosìdivalgono le e vianooPosso diauto sidiflx di fùtrovare autoangolare perché set)avere sa )comuni posso comuneMOM e.l'fra delle proiezionisue (a)unaeflx
Sull'SQuiOrbitale () proiezione per asse L usom 2-e^ se: .)/ S s→ , È tris ) tu(autofaapplicato ha5 SHautoalla ) spiavalcomesua .→ =" da "" tusiaMISz Isis1)1) SYSMe tnslsttroll/ l'Te >>> s> = =mmi ,,, → //mille tutu Sz/ Ye Sss > >la Ss s>= smim , ,,parallelismo notazioneperfetto compatta→42 indicoquindi loS nonsempre• tingono e- =: 4212Sz 1- -= , " "112 fa ↓) ↑autoè ldicola+ oppureconvenzione e con: " "112 " ↓p oppure"-faauto ) di malile Ortona sullo stessoanchersonospin e-BIB 1/2 edi >> <<→ =/2 B 0< > scalareprod 1=.1--0flx ilotto) di normalidiversi tonoe-suspin sempresono p→ dueprodottoilvettoriale il Veltroni ✗Una ortogonaliè scalebraket trarappresentazione o: ↓ scalareprodotto 0=fafu teIdea del li) sistema flx didiidrogenodi auto erano ))con n M: ,ho ilflx deveflx dianche prodottoadesso did' lalo) onda )
esseree-per espin q4hm flx di spin)per unan,flx orbitala chiama) PIUsinuova S fprodotto contieneperché definireseparate orbitaleusateduedi )parti (la lapernessun ×è isolataOrdinata di qualelaspin seitutti finodi delltutticommutano visti 'terminiiad ora^ conspin con ^→ ,separabilesistema→ sali )holì due notazioni 1: →↓ ) )211due piantise 1stlesepara orbitalenell' 1121e- SPLUcon1s =S 2s STOTSApossibilihose 1 proiezioni ≠hoseconda+ 2-su si→ . doppiettestati tripletteproiezioni di multipledi tudettosecondo Sungna → ,, ,definisco statoil di ognisingolo e-spin pere Stai vettoriale dei individualihose Sommapiù