Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
List of Questions
A. Waves
- Solution for the one-dimensional wave equation in z and t variables
- Solution for the one-dimensional wave equation in sinusoidal steady state
- Transmission line: telegraph equations
- Transmission line: sinusoidal steady state
B. Lattices & Crystals
- Point Symmetry operations for a plane lattice
- Point groups in three dimensions
- Three-dimensional crystals and lattices: triclinic, monoclinic, orthorombic
- Three-dimensional crystals and lattices: tetragonal, hexagonal, rhombohedral, trigonal, cubic
C. XRD
- X-Rays and Bragg's Law
D. Piezoelectricity
- Theory
- Piezoelectricity (and ferroelectricity) and direct piezoelectric effect
- Converse piezoelectric effect and linear relations for a piezoelectric material (T, E)
- Linear relations for a piezoelectric material: (S, E), (T, D), (S, D)
- Piezoelectric ceramics - ferroelectric material
- Electromechanical coupling factors
- Mechanical waves in solids: solution for an elastic material
- Applications
- Resonance with a piezoelectric ceramic
- Kinetic energy harvester: model and piezoelectric converters
- Piezoelectric actuators
- Inchworm motor, piezo legs motor and stick-slip motor
- Langevin vibrator and applications
- Travelling-wave motors
E. Waves in medium
- Uniform plane waves in lossless medium: from Maxwell’s equations to one dimensional wave equation
- Uniform plane waves in a lossless medium: solution in sinusoidal steady state. Lossy media: complex permittivity
- Uniform plane waves in lossy media and materials
- Retarded potentials
- Electric dipole
- Magnetic dipole and wave impedence
F. Shielding
- Shielding effectiveness: definition and shielding at low frequency
- Shielding effectiveness: analysis with uniform plane waves
- Absorption loss and reflection loss with uniform plane waves and with near field sources
1) Solution of the One Dimensional Wave Equation in z and t Variables
Order 2nd Homogeneous Linear
∂2ψ(z,t) / ∂z2 = 1 / v2 ∂2ψ(z,t) / ∂t2
Change Variables:
- k = t / 2 - z / v
- w = t / 2 + z / v
z = 1/2 (k-w) , t = 1/2 (k+w)
1st order:
∂ψ / ∂t = ∂ψ / ∂k ∂k / ∂t + ∂ψ / ∂w ∂w / ∂t = ψ (∂k / ∂t) + ψ (∂w / ∂t)
∂ψ / ∂t = ∂ψ / ∂k + ∂ψ / ∂w
2nd order:
∂2ψ / ∂t2 = ∂ / ∂t (∂ψ / ∂k + ∂ψ / ∂w)
= ∂2ψ / ∂k2 + 2 ∂2ψ / ∂k∂w + ∂2ψ / ∂w2
= -1/v2 (∂2ψ / ∂z2 - 2 ψ ∂2 / ∂k∂w)
∂2ψ(k,w) / ∂k∂w = 0 = ∂/∂k (∂/∂w ψ(k,w))
ψ(k,w) = α1(w) + α2(k)
ψ(z,t) = α1(t/2+z/v) + α2(t/2-z/v)
q.e.d. Quantized in a Binomial
Point Symmetry Operations for a Plane Lattice
Rotation for a plane lattice:
a1x = a1cosφ a1y = a1sinφ ax = ay ayy = 0
If rotation of φ is lattice point (l) then also -φ is lattice point (l).
If lattice is invariant with rotation φ, it is also invariant with rotation -φ.
|2axcosφ| = M*ay, M > 0
In order to have a symmetry of rotation 5 values are possible:
0 {2π} π 3π π/3 2 1/3
Expressed as:
2π/m, m = 1,2,3,4,6
PIEZOELECTRICITY (AND FERROELECTRICITY)
"ELECTRICITY BY PRESSURE"
- 32 CRYSTAL CLASSES -> 11 CENTROSYMMETRIC
- 21 NOT
- 20 OF THESE NON POLAR
- 10 POLAR
- ONLY WITH MECHANICAL LOAD
- SPONTANEOUS
- FERROELECTRIC CRYSTALS
SIMPLE MODEL
MECHANICAL FORCE
MOMENT OF THE BARYCENTER OF THE POSITIVE AND NEGATIVE CHARGES
=> ELECTRIC DIPOLE MOMENT
[IN LARGE SCALE]
UNIFORM POLARIZATION
LINEAR MODEL IS CONSIDERED
Pp = dijT
PZT CONST [C/N]
PIEZ POLARIZATION
d = [3x6
d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36]
Mechanical Waves in Solid: Solution for an Elastic Material
dx, dy, dz
f11 = T11 + ∂T11/∂x dx/2 + (T11 + ∂T12/∂y)dy/2
f13 + ∂T13/∂z dz/2
(∂T11/∂x + ∂T12/∂y + ∂T13/∂z)dxdydz
N.B. Same for other two directions
Longitudinal Vibrations
if uk/1 infinitesimal displacement
S1 = (1 / ∂x) ux(x,t)
d2/dx2(ux(x,t))
u(x,t) = A1 sin [w(t-x/vn)] + α] + A2 sin [w(t+x/vn)] + β]
S1 = ∂ / ∂x (ux(x,t)) = A1 wn cos [w(t-x/vn) + α] + A2 wn cos [w(t+x/vn) + β]
Boundary Conditions
LANGEVIN VIBRATOR AND APPLICATIONS
Wj = T/L = λ/2
ρL = N/2L + 5cm/2 in steps→ ρm @ 40 kHz → L = 5.25 cm
PAIR OF DISKS PIEZOELECTRIC
N(t) SINUSOIDAL AT RESONANT FREQUENCYRESPONSE POLARIZED AND PARALLEL CONNECTS
SUITABLE FOR ULTRASONIC TRANSMISSION IN SEA
- Navantia - 5 km/s
- L = 5.25 cm @ 40 kHz
- 0.5 cm bronze piezoceramic PHDZ plates
Retarded Potentials
B(p, t) = ∇ × A(p, t)
E(p, t) = -∇*A(p, t) - ∂/∂t A(p, t)
-∇2E(p, t) - ∂/∂t (∇·A(p, t)) = -ρfree(p, t)/ε
Set ∇*A(p, t) = 0
∇2V(p, t) = -ρfree(p, t)/ε
∇2A(p, t) = -μ0J(p, t)
V(p, t) = ∫ (ρfree(q, tret)/ε) dV
A(p, t) = ∫ (μ0J(q, tret)/(4π)) dV
30
Absorption loss and deflection loss with uniform plane waves and with near field sources
Adr = 20 log d⁄δ ≈ 1⁄8 log e ≈ 8.7 d⁄δ δ = 1⁄√πfμ0
σ >> μ in magnitude (more relevant) conductor better than magnets assuming this function
for Qab assume that E0 = in vμ negligible in medium 2
Combination of boundary 1 and 2
→ [σ(z=0) - σ(z=d)] → [E⁄H] z=0 · [E⁄H] z=d = (M0 + M) (M0 + m)⁄Zμ
→
Pols = -20 log [MS + M]2⁄[M⁄m]
Good conductor
σ >> WE → η = ⁄
→
Pols ≈ 20 log [MS + M]2⁄[M⁄m] - 10 log