Anteprima
Vedrai una selezione di 8 pagine su 32
Appunti Electromagnetic Micro Nano Devices Pag. 1 Appunti Electromagnetic Micro Nano Devices Pag. 2
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 6
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 11
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 16
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 21
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 26
Anteprima di 8 pagg. su 32.
Scarica il documento per vederlo tutto.
Appunti Electromagnetic Micro Nano Devices Pag. 31
1 su 32
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

List of Questions

A. Waves

  1. Solution for the one-dimensional wave equation in z and t variables
  2. Solution for the one-dimensional wave equation in sinusoidal steady state
  3. Transmission line: telegraph equations
  4. Transmission line: sinusoidal steady state

B. Lattices & Crystals

  1. Point Symmetry operations for a plane lattice
  2. Point groups in three dimensions
  3. Three-dimensional crystals and lattices: triclinic, monoclinic, orthorombic
  4. Three-dimensional crystals and lattices: tetragonal, hexagonal, rhombohedral, trigonal, cubic

C. XRD

  1. X-Rays and Bragg's Law

D. Piezoelectricity

  1. Theory
    • Piezoelectricity (and ferroelectricity) and direct piezoelectric effect
    • Converse piezoelectric effect and linear relations for a piezoelectric material (T, E)
    • Linear relations for a piezoelectric material: (S, E), (T, D), (S, D)
    • Piezoelectric ceramics - ferroelectric material
    • Electromechanical coupling factors
    • Mechanical waves in solids: solution for an elastic material
  2. Applications
    • Resonance with a piezoelectric ceramic
    • Kinetic energy harvester: model and piezoelectric converters
    • Piezoelectric actuators
    • Inchworm motor, piezo legs motor and stick-slip motor
    • Langevin vibrator and applications
    • Travelling-wave motors

E. Waves in medium

  1. Uniform plane waves in lossless medium: from Maxwell’s equations to one dimensional wave equation
  2. Uniform plane waves in a lossless medium: solution in sinusoidal steady state. Lossy media: complex permittivity
  3. Uniform plane waves in lossy media and materials
  4. Retarded potentials
  5. Electric dipole
  6. Magnetic dipole and wave impedence

F. Shielding

  1. Shielding effectiveness: definition and shielding at low frequency
  2. Shielding effectiveness: analysis with uniform plane waves
  3. Absorption loss and reflection loss with uniform plane waves and with near field sources

1) Solution of the One Dimensional Wave Equation in z and t Variables

Order 2nd Homogeneous Linear

2ψ(z,t) / ∂z2 = 1 / v22ψ(z,t) / ∂t2

Change Variables:

  • k = t / 2 - z / v
  • w = t / 2 + z / v

z = 1/2 (k-w) , t = 1/2 (k+w)

1st order:

∂ψ / ∂t = ∂ψ / ∂k ∂k / ∂t + ∂ψ / ∂w ∂w / ∂t = ψ (∂k / ∂t) + ψ (∂w / ∂t)

∂ψ / ∂t = ∂ψ / ∂k + ∂ψ / ∂w

2nd order:

2ψ / ∂t2 = ∂ / ∂t (∂ψ / ∂k + ∂ψ / ∂w)

= ∂2ψ / ∂k2 + 2 ∂2ψ / ∂k∂w + ∂2ψ / ∂w2

= -1/v2 (∂2ψ / ∂z2 - 2 ψ2 / ∂k∂w)

2ψ(k,w) / ∂k∂w = 0 = ∂/∂k (∂/∂w ψ(k,w))

ψ(k,w) = α1(w) + α2(k)

ψ(z,t) = α1(t/2+z/v) + α2(t/2-z/v)

q.e.d. Quantized in a Binomial

Point Symmetry Operations for a Plane Lattice

Rotation for a plane lattice:

a1x = a1cosφ   a1y = a1sinφ   ax = ay   ayy = 0

If rotation of φ is lattice point (l) then also -φ is lattice point (l).

If lattice is invariant with rotation φ, it is also invariant with rotation -φ.

|2axcosφ| = M*ay,   M > 0

In order to have a symmetry of rotation 5 values are possible:

0 {2π} π   3π   π/3   2   1/3

Expressed as:

2π/m,   m = 1,2,3,4,6

PIEZOELECTRICITY (AND FERROELECTRICITY)

"ELECTRICITY BY PRESSURE"

  • 32 CRYSTAL CLASSES -> 11 CENTROSYMMETRIC
  • 21 NOT
  • 20 OF THESE NON POLAR
  • 10 POLAR
  • ONLY WITH MECHANICAL LOAD
  • SPONTANEOUS
  • FERROELECTRIC CRYSTALS

SIMPLE MODEL

MECHANICAL FORCE

MOMENT OF THE BARYCENTER OF THE POSITIVE AND NEGATIVE CHARGES

=> ELECTRIC DIPOLE MOMENT

[IN LARGE SCALE]

UNIFORM POLARIZATION

LINEAR MODEL IS CONSIDERED

Pp = dijT

PZT CONST [C/N]

PIEZ POLARIZATION

d = [3x6

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36]

Mechanical Waves in Solid: Solution for an Elastic Material

dx, dy, dz

f11 = T11 + ∂T11/∂x dx/2 + (T11 + ∂T12/∂y)dy/2

f13 + ∂T13/∂z dz/2

(∂T11/∂x + ∂T12/∂y + ∂T13/∂z)dxdydz

N.B. Same for other two directions

Longitudinal Vibrations

if uk/1 infinitesimal displacement

S1 = (1 / ∂x) ux(x,t)

d2/dx2(ux(x,t))

u(x,t) = A1 sin [w(t-x/vn)] + α] + A2 sin [w(t+x/vn)] + β]

S1 = ∂ / ∂x (ux(x,t)) = A1 wn cos [w(t-x/vn) + α] + A2 wn cos [w(t+x/vn) + β]

Boundary Conditions

LANGEVIN VIBRATOR AND APPLICATIONS

Wj = T/L = λ/2

ρL = N/2L + 5cm/2 in steps→ ρm @ 40 kHz → L = 5.25 cm

PAIR OF DISKS PIEZOELECTRIC

N(t) SINUSOIDAL AT RESONANT FREQUENCYRESPONSE POLARIZED AND PARALLEL CONNECTS

SUITABLE FOR ULTRASONIC TRANSMISSION IN SEA

  • Navantia - 5 km/s
  • L = 5.25 cm @ 40 kHz
  • 0.5 cm bronze piezoceramic PHDZ plates

Retarded Potentials

B(p, t) = ∇ × A(p, t)

E(p, t) = -∇*A(p, t) - ∂/∂t A(p, t)

-∇2E(p, t) - ∂/∂t (∇·A(p, t)) = -ρfree(p, t)/ε

Set ∇*A(p, t) = 0

2V(p, t) = -ρfree(p, t)/ε

2A(p, t) = -μ0J(p, t)

V(p, t) = ∫ (ρfree(q, tret)/ε) dV

A(p, t) = ∫ (μ0J(q, tret)/(4π)) dV

30

Absorption loss and deflection loss with uniform plane waves and with near field sources

Adr = 20 log dδ ≈ 1⁄8 log e ≈ 8.7 dδ δ = 1⁄πfμ0

σ >> μ in magnitude (more relevant) conductor better than magnets assuming this function

for Qab assume that E0 = in vμ negligible in medium 2

Combination of boundary 1 and 2

→ [σ(z=0) - σ(z=d)] → [EH] z=0 · [EH] z=d = (M0 + M) (M0 + m)⁄Zμ

Pols = -20 log [MS + M]2⁄[Mm]

Good conductor

σ >> WE → η = ⁄

Pols ≈ 20 log [MS + M]2⁄[Mm] - 10 log

Dettagli
Publisher
A.A. 2020-2021
32 pagine
SSD Ingegneria industriale e dell'informazione ING-INF/01 Elettronica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher ostoina di informazioni apprese con la frequenza delle lezioni di Electric and Electromagnetic Micro/Nano Devices e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Padova o del prof Desideri Daniele.