vuoi
o PayPal
tutte le volte che vuoi
!
6 2 ,##
• 3 7 2 @
• 3
3
•
•
A 6
$ B C
! !
# 7 #
Poligonale di controllo
Control Points Curva di Bezier
+ 3
n
(t) = p · (t)
B b
n k n,k
k=0
7
p R ≥ 2
d
ε d
k D 2 #
n
(t) = (1 − t ∈ [0, 1]
k n−k
t t)
b n,h k
- + , #
P
i
E - 3 2 #7
7
n (t) = 1
b
n,k
k=0
!" #
. '
(1 − = 1
n
nk=0 k n−k
t t)
k
n n
(a + =
n k n−k
b) a b
k
k=0
F 2F
n n
(t + 1 − = (1 −
k n−k
t) t t)
k
k=0
+ # B C 9
$
6 G
OK NO
- 8 (t) ≥ 0
b
n,k
.
k
(t) = (1 − ≥ 0 ∈ [0, 1]
k n−k
b t t) t
n,k t
" # ! :;
#
• 3
•
( 9 # +
, E 6
2
prima curva seconda curva
0, =
0 0, =
E k k n
(0) = (1) =
b b
n,k n,k
1, =0 1, =
k k n
!" %
* , # 7
2 3 (t) = (1 −
b b t)
n,k n,n−k
& # 7
!7 7 !
(t) = 1
b
n,k
7
# ! , (t)k =
b nt
n,k
) B C 9
&!
? 7
#
$ B
!" !'
7 ! - Disegno iniziale
Disegno modificato
9 3 @ 3
: 7 7 ;7
3
# B C +
!" !
3 9
# ,
! !( )
E 2 : #
;7 !
* +
! "#$ %"&
+, # $ % 7
2
b 1
b 0 b 2
2
2 2−k
(t) = (1 −
k
B t t) b
2 k
k
k=0
# 8 $
1
=
t 2
#
b b
0 1 b 1 10 = (1 − +
b t)b tb
0 1
b 0 b 2
b b
0 1
b 1 11 = (1 − +
b t)b tb
1 2
b 0 b 2
A
10 11
b b
b 1 20 11 11
= (1 − +
b t)b tb
b 0 b 2
! !( ,
6 12
20 =
b t .
+ - -
20 = (1 − − + ] + − + ]
b t)[/1 t)b tb t[(1 t)b tb
0 1 1 2
= 1
2 2 )
+ 2t(1 − + = (
(1 − b t)b t b B
t) 0 0 2 2 2
b 2
b 1 b
3 3
3 3−k
(t) = (1 −
k
B t t) b
b 3 k
0 k=0 k
#
12
=
t
# #
b 2
b 1 1
b 1 10 = (1 − +
1 b b b t)b tb
3
2 0 1
11 = (1 − +
b t)b tb
b 1 2
0 1
b 12
0 = (1−t)b +tb
b 2 3
7 7 #
10 11 11 12
b b b b
b 2
1
b 1
1 b
b 2
1 2
b b 20 10 11
1 3 = (1 − +
1 b t)b tb
b 2
0 b 21 11 12
= (1 − +
0
b b t)b tb
0
$ # 7
20 21
b b
! !( *
b 2
1
b 1
1 b
b 2
1 2
b b
1 3
1
b b 3
2
0 b 30 20 21
= (1 − +
0
0 b t)b tb
b 0
b 2
b 1 b 3
4
4 4−k
(t) = (1 −
k
B t t) b
b 4 k
0 k=0
b k
4
#
13
=
t b 2 10 = (1 − +
b t)b tb
0 1
11 = (1 − +
b t)b tb
1 2
b 1 1
b 12 = (1 − +
1 b t)b tb
b 2 2 3
b
1 3 13 = (1 − +
b t)b tb
3 4
b 0 b
1
b 4
1 3
b 0
# # 7 #
1
=
t 3 b 2 1
b
1 2
b 20 10 11
1 = (1 − +
b b t)b tb
1 21 11 12
= (1 − +
2 b t)b tb
b 2 b
b
1 3 22 12 13
= (1 − +
2 b t)b tb
1
b 0
b 2
0 b b
1
b 4
0 3
-.! !(/ 0
9 b 2 1
2 b
b
1 2
1
b 1 30 20 21
= (1 − +
b 2 b t)b tb
b
1 2 31 21 22
= (1 − +
b t)b tb
b
2 3
b 3
b 0 1
1
b 3
b
0
b 0 b
0 1 4
b 3
' - b 2 1
2 b
b
1 2
1
b 1
b 2
b
1 40 30 31
= (1 − +
2 b t)b tb
3
b 3
0 b
b
2 3
1
b 0
1
b 0 b
b 04
0 b
1 4
b 3
' ("#$ %"&) *
7
0
b
i
= (1 − r−i
ri
b t)b
i
+ !
= 1, = 0, −
r . . . , n i . . . , n r
r
b
0 = (t)
r r
b b
0
+, # $ % 6 2
+ 2 ! 6 @ 2 +
1 − ≥ 0
t t
! , #
> 6 2 #
!( 3
b
0 2
2
b b
0 1
1 1
1
b b b
0 2
1
b b b b 3
0 2
1
# ! ! +
+ "#$ # "
+, # # : ;
H 2 ! ## # 9
#
# + 1
n n
E j j
1 ·
= + 1 ·
b
b b
j−1 j
+1 − 1
j n n
= 1, · · ·
j , n
$ # # +, # I
b b
0 n+1
, - 7 : #
; ! G +, # 6 2
7 J # -
, "#$ %%
+, # 6 ? -
9 7 =
r
7 - 7 (s)
0, n
C
. . . , n
, 3 9
# - # $ %
- .
7 7 -
= (t)P (t)
n
C(t) b c
n,i i
i=0
n−1
d
= (t) = (t) · [n(P − )]
c(t) c b P
n−1,i i+1 i
dt i=0
,? 7 I
6 7 # G 2
n−1 (t)Q
b
n−1, i i
i=0
>
(0) = − ) (1) = − )
C n(P P C n(P P
1 0 n n−1
, !!"
- 7 6 7
1
/
3 G E
6 2 # !
$ ! 9 #
! !
7 7 #
7 6 - + !
# ! 9
i
C i
7
0 1
C C
6
#
D # $ 1
C
+ ! # 7 ? J
1
G
# 7 ? 2
0 1
C C
+
Knots 9 : ;
2!
0 1
+ 3 2 ,
E 3
,
3
9 : ; 6
+ 1
M m
+, ,
≤ ≤ ≤ [m )
m m . . . m , m
0 1 n i i+1
=
2!
7
# = =
m m m m
i i i+1 i+k−1
# # 9
? 6 3
! !!"
m i
= 3
2
# =
m m
i i+1
# ?
!! !!
m i
9- !
1 !! !
= 0 = 1
m m
0 m
+ 3 2 # -
(u)
N p
i,p
-
> 6 " E 2 #
p #
$ : ! #
= 0 0
p
? 3 ! ;
1, ≤
m m < m
i i+1
=
N
i,0 0, altrimenti
9 7 -# 7 3 #
> 7 $K
− −
u u u u
i i+p+1
(u) = · (u) + · (u)
N N N
i,p i,p−1 i+1,p−1
− −
u u u u
i+p i i+p+1 i+1
+, 7 3 # 7 I
7
$ , [0, 3] = 0
p
9 = 7 7 7
= 0 = 1 = 2 = 3
m m m m
0 1 2 3
$ 7
= 0 = 0 [0, 1)
i p
1,
=
N
0,0 0, f uori
0 1 2 3
$ 7
= 1 = 0 [1, 2)
i p
1,
=
N
1,0 0, f uori
0 1 2 3
' - 7
= 2 = 0 [2, 3]
i p
#
"
1,
=
N
2,0 0, f uori
0 1 2 3
9 # - 3 # 7
# !
9 6 !
p
− −
u u u u
0 2
(u) = · (u) + · (u) =
N N N
0,1 0,0 1,0
− −
u u u u
1 0 2 1
· (u) + (2 − · (u)
u N u) N
0,0 1,0
E
[0, 1)
u ε J
· 1 + (2 − · 0 =
u u) u
[1, 2)
u ε
· 0 + (2 − · 1 = 2 −
u u) u
,
[2, 3] 0 0 1 2 3
N
1,1
− −
u u u u
1 3
(u) = · (u) + · (u) =
N N N
1,1 1,0 2,1
− −
u u u u
2 1 3 2
(u) + 3 − · (u)
− 1 · u N
u N 1,0 2,0
E
[1, 2)
u ε J
− 1 · 1 + (3 − · 0 = − 1
u u) u
[2, 3)
u ε
− 1 · 0 + (3 − · 1 = 3 −
u u) u
,
[1, 2] 0 0 1 2 3
0 7 ? @!
? 9
1
= 2
p p
− −
u u u u
0 3
(u) = · (u) + =
N N
0,2 0,1
− −
u u u u
2 0 3 1
(u) + 0, 5(3 − (u).
0, 5u · u)N
N 0,1 1,1
3 %
E
[0, 1)
u ε
2
0, 5 · [1, 2)
u u ε
2
0, 5 · (3 − u)
,
[2, 3]
2
0, 5 · (−3 + 6u − 2u )
$
N N
1,2 2,3
:6 2 , #
22
; -#
! .* 01"
$
n
= (u)P
C(u) N
i,p i
i=0
!! "" 0%"
22 ! # ! 7
# ! !
3
# E #
N
i,p
- 9 !
2
+ #
(u) ≥ 0
N
i,p :3 , ; #
" [u
N , u
i,p i i+p+1
E 6 2 2 6 (u)
N
i,p
#
( ! E
(u) = 1
N
i,p
, #
* :? ! 3 # ;
= + + 1.
m n p + =
& (u) p−k
N ε c
i,p