vuoi
o PayPal
tutte le volte che vuoi
RESISTOR FURNACES
E = QAS - QC - PN tP + ∫ p(t) dttP
+ PO (t - tP)
QAS = PN tP + ∫ p(t) dt - ∫ pC (t) dt
QC = ∫ pE (t) dt + PO (t - tP)
STORED + THERMAL ENERGY
ENERGY LOSS TO
THE ENVIRONMENT
PO =
- PC =
- LOW CONVECTION
- HIGH CONVECTION
Design of Walls
Anaaling Temperature: 850°C
Treating Chamber: 49, 0.85, 0.65 mm
θ i = 80°C (Max Kieselgur)
θ e = 50°C θ e (Vogtland 01)
p e = 800 W/m2
All Theoretical
Iteration with Thicknesses
A1 = Am 8,51 m2
A2 = 10,18 m2
AF = Ae = 15,52 m2
⇒ AFm = √(A1 A2 8/14 m2)
A2m = √(A1 A2) = 12,19 m2
RM = d/λA2m
P = Qe/R1 + R2 + R3
P0 = P0/A1 + 14,12 W/m2
! > 800 W/m2
For λ P0 = 3000 W
⇒ R1 + R1 + R3
A2 = 23,98 m2
A2m = 16,57 m2
Induction Heating System
Point Parameters
EM Distribution in Cylindrical Geometry
rot E = - dH/p
rot H = dE/p - jw p H
d2H/dr2 + 1/r dH/dr - β2 H = 0
Nella forma di un'equazione di Bessel
H = C1 J0 (βr) + C2 βy (m)
H0 = NI/l
2(√5x)= [bex+ βmex] + [beux+ βmuex]
H/H0 = [ber (m mr) + β bei (mr)] / ber (m) + β bei (m)
THERMAL TRANSIENTS
FOURIER EQUATION:
HEAT FLUX
P = -λ dθ/dm = -λ grad θ = -λ ∇θ
ON A VOLUME dV
∑dΠ = ∑ρidAi = -divP dV
INCREASE OF INTERNAL ENERGY
cy dθ/dt dV
cy dθ/dt = div(λgradθ) + w
k = λ/cy
THERMAL DIFFUSIVITY
W(ϱ) PARAbolIC DENSITY DISTRIBUTION
BOUNDRY CONDITIONS
θ(ϱ,t)=0 t=0
∂θ/∂r
r=R
Ψ(η)=2π2/P0 ∫ W(n)
SU PARAMETRI ADIMENSIONALI
∂θ/∂ζ ∂2θ/∂ζ2 +1/ϱ2Ψ(η)
⇒Ψ(η)=W(η)/W0
M