Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Intro
Vibration and sound are two wave physical phenomena, that is the wave propagation in an elastic and inertial medium.
Vibration -> wave propagation in a solid medium
Sound -> wave propagation in a fluid
To mitigate noise or vibration we can act at 3 levels:
source -> emission path -> receiver
Depending on it we have air-borne noise and structure-borne noise, depending on how the energy is transmitted (fluid or solid).
String
Transverse wave in a stretched string -> string's particles oscillate in a direction that is perpendicular to the wave's propagation direction
- Shear force and bending moment are neglected
- Homogeneous material and constant chain tension
- Tension T is high with respect the string's weight, it means the string's configuration can be approximated as linear in the static equilibrium position
- Small vibration amplitude, it means tension's variations are negligible with respect the static configuration value of T
- Damping is neglected
The one-dimensional wave eq can from a fine balance applied on an infinitesimal string element
Fin = max∂2ω/∂t2
m = β A [kg/m]
{
Fin α ≃ α = εβα = ∂ω/∂x
Finx ε2 d2x εβα = ∂/∂x (w + ∂ω/∂xα)
-Fin - Tinx α + Tinner = ϕ
-mα∂2ω/∂t2 - T ∂ω/∂x/,_d/∂x(w + ∂ω/∂x) = ϕ
-m∂2ω/∂t2 + T∂2ω/∂x2 αk = ϕ
=> T∂2ω/∂x2 = m∂2ω/∂t2
X/F RECEIPRANCE
F/X DYNAMIC STIFFNER
X/F MOBILITY
F/X IMPEDANCE
X/F INERTANCE
F/X APPARENT MASS
POINT OF TRANSFER
if the input and output positions are coincident or not
w = kC c = √t/m
- Vo(sin(t) = JωW(ω,t) = Fo eJωt
= so it is in phase with the force
- Vectitive relative
we can compute the driving-point mechanical impedance
zm = F(t) = C= w/fve(t)
= so rinj's characteristic impedance
- Gv it does not depend that is real, constant and freqency impedance at become it is
- independent. it relates force and trend mechanical (100tenp)
- lection @x = x0 in sw
Generally zm is complex and frequency dependent
zm = |zz| + jJi
= Jzm| (cos J + jsinJ) = Jzm|ebJ = zmw)
- |zr| -o relitive breakfast
- |zr| o relutive component
Gv J is here phune diffhonoe between F and V, that
can be remedonted in
the canian's ploes of 2 kztxtive ventos
F
F, = Fo eexjΘ
v = Vo ejxg - Θ
=o
f(t) = ex (f τ ejωt)
= Fo cos (ωt+Θ)
(Vo(t) = ev (VeJωt)) = VoeJωt+Θ-Φ
fin
N + dN/dx dx = N(x + dx, t)
=>
- dN/dx - Md2u/dt2 = 0
N = EA du/dx
=>
EA d2u/dx2 = m d2u/dt2
{ fo + EA (-JK A1 + JK A2) = ∅
EA (-JK A1 eJKL + JK A2 eJKL) + tc JW (A1 e-JKL + A2 eJKL) = ∅
= D A1 = - J Fo / CMN wtc + cmw / wtc (eJ2KL + 1) + cmw (eJ2KL - 1)
= D A1 = J Fo / CMN wtc - cmw / wtc (eJ2KL + 1) + (cmw (eJ2KL - 1)
dynamic eq equation
T + dT/dx + M d2w/dt2 = 0
dT/dx = -M d2w/dt2
=d2M/dx2
deflexion line ep
M/EJ = d2w/dx2
remembering φ = dw/dx
d2w/dx2 = -M/EJ d2w/dt2
Plate
Kirchhoff's Theory
- Flat plate with constant thickness
- The plate is thin, thickness much smaller than the other dimensions
- Homogeneous isotropic and linear elastic material
- No transverse displacement w
- Linear deformation reflected
- Surface where w is supported
- Displacements u and v are proportional to the distance z from the mid plane, because a line segment initially normal to the undeformed xy mid plane remains straight and normal to the elastic surface under bending.
We have to find the bending variation ep of a plate and to do that we first define deformations and moment from an infinitesimal plate element:
Given an infinitesimal rotation dφy due to bending (it is the relative arc between the two small segments), we find the infinitesimal displacement along x axis du.
The same can be done along y for dv.
Obtaining :
=> du = -z dφy
=> dv = -z dφx
kBw = ps⁄B w2 → w = B⁄ps ks2
CB = w⁄KB = 4⁄√psBw = B⁄ps ks
φ = dω⁄dk = 2 B⁄ps KB { φ̇ = 2CB
Plate Eq in Polar Coordinates
r² = x² + y²θ = arctg (y/x)
dx/dx = 1dx/dy = 0
dy/dx = 0dy/dy = 1
dx/dθ = -y/r ²(dy/dθ)(x/y)² = y/x² + (y/x)² = -y/(2) = -hinθ
dy/dθ = x/1+(x/y)²
w((x,u),θ(x,u),t) variable
dx/dt = dw/dt - dx/dθ = cosθ dw/dy - sinθ dw/dx
d²w/dx²
(cosθ dy/dx - sinθ dθ/dx)(cosθ dw/dx - sinθ dw/dy)
= cos²θ d²w/dx - cosθsinθ dw/dy - cosθsinθ d²w/dy + sin²θ d²w/x2
= cos²θ d²w/dx + 2sinθ cosθ dw/dx + 2sinθcosθ
dy/dy = dw/dt - dx/dθ = sinθ dw/dy + cosθ dw/dx
d²w/dx² + d²w/dy² + l d²w/r + 1 d²w/t
Note: 20p w planar coincides to polar coordinates
out Δ= 0 to get a non-trivial sol (imposed motion)
=> Jn(kR) α J'n - In(kR) α J'n = 0
that is a non-linear algebraic eq with unknown k
we can use Bessle’s function properties
α d Jn d In
d In = -k In(kR) + kR I'n(kR)
I Jn(kR)
α d Jn d In
d In = n Jn(kR) - kR J'n(kR)
=> Jn(kR)I'n+In(kR)Jn+Jn(kR)=
algebraic
This non-linear eq is solved for each m value, finding a
consider infinite number of m solutions (kR)nm
=> ωnm = (kR)nm β
------------- √B
The modes unm corresponding to a precise ωnm can be
found from the Bim eq imposing (for example) |C| = 1 and
finding C = - Jn(kR)nm
In(kR)nm
=> Φnm(r,θ) = [ Jn (Krnm . r)
------------------- - Jn(KR)nm In (kR)nm . I)
W(r) ------------------------------
I(n)(kR) I(n)(kR)
{ n gives the number of nodal diameters m gives the number of nodal circumferences
N = 2
M = 1
NB an infinite plate with a point harmonic force applied has a constant load and frequency-independent mechanical impedance
tm = 8βps
it is a good approximation to a finite dimensionNB rec R [[?]] in bending and rot(?)