Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
CONFRONTO STADIO AD AZIONE E A REAZIONE
Si esegue il confronto a parità di lavoro massimo
AZIONE
- LMAX,A
- ΘMAX = 1/2
LMAX,A = 2UA2
LMAX,A = LMAX,R
2UA = UR
uR = √2 UA
- ΘMAX = 1/2
UA / CIA cosα1 = 1/2
REAZIONE
- LMAX,R
- ΘMAX = 1
LMAX,R = UR2
- ΘMAX = 1
UR / CIR cosα1 = 1
UA CIR / UR CIA = 1/2
CIR = 1/2 UR / UA = √2 / 2
CIR = √2/2 CIA = CIA / √2
RUR ∝ CIR2, RUA ∝ CIA2
RUR = 1/2 RUA
proporzionamento normale
RUR = RRR = 1/2 RUA
RTOT,R = RR + RUR = 1/2 RUA + 1/2 RUA = RUA
Le perdite totali nello stadio a reazione sono uguali a quelle nello statore dello stadio ad azione, per cui:
RTOT,A > RTOT,R
TURBINA DI DE LAVAL (turbina ad azione semplice)
STATORE
ROTORE
ARCO DI IMMISSIONE
TENUTE LABIRINTO
turbina monostadio ad azione
Il vapore entra attraverso l'arco di immissione le tenute a labirinto creano una caduta di pressione localizzata, minimizzando le perdite di vapore
TURBINA CURTIS (a salti di velocità)
RADDRIZZATORE
RADDRIZZATORE: condotto fisso, non espande il fluido ma ne cambia direzione
TURBINA A REAZIONE
Turbina multistadio a reazione
l'espansione del fluido provoca spinte assiali sul tamburo rotante da SX a DX. Si preleva una portata di vapore e la si mando ad un ambiente separato dall' ambiente di aspirazione del tamburo equilibratore. La differenza di pressione geneva una spinta da Dx a Sx sul tamburo equilibratore. Ulteriori spillamenti ad alta pressione vengano mandati sulle Tenute a labirinto, evitando l'ingresso di aria la quale alzerebbe la pressione nel condensatore
V=ṁ Dn C1 sen α1L = C12cos2 α1 θ (2-θ)
C1 = √ (L/θ (2-θ))L/(cos α1)
V=ṁ Dn √ (L/θ (2-θ)) tg α1
forma quadratica del primo membro per via della dipendenza di cp da T
temperatura adiabatica di fiamma
Si ottiene per
è la massima temperatura ottenibile dalla fiamma, si ottiene con pareti refrattarie
RENDIMENTO DEL GENERATORE
Δhv = hh2o out - hh2o im
ηseu = ṁv Δhv/ṁfuel LHV
Per via dei valori generalmente alti, non è la definizione utilizzata poiché errori di misura possono portare a
ηseu = ṁfuel LHV - Q̇persa/ṁfuel LHV = 1 - Q̇persa/ṁfuel LHV
INCOMBUSTI
Q̇E
Q̇persa
CALORE SENSIBILE DEI FUMI
Q̇S
CALORE DISPEROSO ( PARETI )
Q̇d
ηseu = 1 - Q̇d + Q̇s + Q̇s/ṁfuel LHV = 1 - [q̇d + q̇s + q̇E]
ṁfuel ɛ LHV - (
LZM = cost = k
z = k/LM
ṁH₂O = β CH₂O Ak/LM
Per assegnata
ṁH₂O ↑, m ↑ → CH₂O ↑
CH₂O ∝ αm
CH₂O ↑ → αH₂O ↑
Q̇ = U S ΔTmℓ → U ↑ → S ↓
tuttavia R α m L CH₂O α CH₂O3
CH₂O elevati portano a perdite elevate, oltre a danni dovuti a impurità presenti nell'acqua
CH₂O troppo bassi, oltre ad un peggioramento dello scambio termico, portano alla possibile deposizione delle impurità
Q̇ = ṁH₂O Ce ΔT = ṁv Δ hv
Se CH₂O = cost, L ∝ 1/ṁ
Un numero basso di passaggi comporta L troppo elevati, quindi il vapore non raggiunge le zone periferiche
Aria
Per diminuire la pressione di condensazione, la pompa che crea il vuoto aspira il vapore portando a perdite di vapore