SVOLGERE IN MANIERA
ELEMENTARE tutto
RESETTIAMO questo
procettiamo
: ((x y}
(0
y)cR
sull'asse
trangolo D 10
delle =
= x
y
= =
=
. ,
ordinate la
quindi proventione
, (e my
da y 0 (4e
Va mun
un %
e
= d) m
(x) !
* e]
( (e 1)
=
1 +
=
y
max =
=
un = -
(3)
Es .
((xy(axy4 ((x 3
y)R)I
= ,
↓
CON
CASO A
V .
. -
y /P
( 4) y)
P (
X x
= +
·
= +
- QUESTA FIGURA MOLTIPLICO
ALLORA CONSIDER
, Alla fine
E
, >
> -
-
È simmetrica PER
TRIANGOLO
IL ARB L
(x)(y)
y)
y(x =
,
e
ESERCIZI : 5)
G(x
-a)((x y)E
y)dxdyD Y
X
+ = =
, Nyz
x = y
x
= , 1
o = -
N x2
y2 1
= -
I N
x
=
y =
f)
((x 411x)
4)(xd =
+ =
xy]
= yy]
(ty
yn y
- y + +
+ -
(
(1 344
yo
4) dy
y
+
= - -
= 445]
[2y
yny)d
-24 3)1
zy 5
=
+ - =
- -
((x a
:
b) ((x *
yz)dxdyb y)eR
=
+ 2-
, b
I
(
/[x
)(x))(x
((x )(x
yy3](x
yydy) 1(2x =
f](x (tx
yz)dxdy ] 5
x" gex =
8
+ =
+ = =
y =
= + *
+ +
+ -
-
((x
( :
y) e
c) x ydy D = ,
#e
= =
↑ () -
(x ((x y)e
4 Yyy(x yD
& = , Se
& S VEx =
x
y
- N
v -x
vy
yc = >
x
-
(
· , + (
& a)(2
xdy 2)
(0
axy %
1
y
= - ,
,
y ,
-
·
I
2x
2 +
- 2
22x30((x 2x
**
2
((X :
4)
y) +M
T = , ,
(
(i) (). y)
) + +
+ x &
I
[Six
di +=
2x)2
-(2
E + xz] (
(2x 1)
( 1
2
= +
+ - =
= I
/(1) Sey"
= =
(2-x]
**.
X
=( m]
((zx 9)
+ kx
s Sx +
=
- - 1)]
(tX Sh(x
Sx +
+
= -
= Sh3)
((2 10 +
-
=
x
+ lm3
D Q +
3
=
+ -
r(x yy)(xd ((xy)t(2 x3
0
1
- 0 X
: = =
=
· y =
=
+ , #I
,
*
%
x() axmy)
y-
+ y]" =
(k(xy +
+ x
=
h(x xeYdx y)t(2
((x 33
+ 1
+ +
2
: =
zy
= =
· x
y =
- , , (m))))
m)(),y)
,
-(x (
( xmxm
exdy -
=
+ -
[][e"]
(5x]}y z(e e)
= n -
=
= -
.
/x M
E(X 23
x
y)
ydxdy =
y
= =
n :
=
· , 43
y)EM
((x x
1
0x =
y
m =
=
:
= , ,
yy(xx 1 (ex y](x ( y(x yxy
xex
x - E(tx
x xx =
=
= - =
= -
((x ((x 43
(3 y2
x X1)
y)(x 1
y) 1 =
+y 0 =
:
-
· = =
m y
= -
+
+ , ,
ore x2
ore x 1
+ =
C
psen
Y 2x
970
= 1
↳ =
x I
= =
X =
P 1
=
00
r =
((p 9) er 0
0
op 1 =
=
:
= ,
,
((x ((p(x 10 (cax
psenx)118
y)(x +y E
smx)dede RETTANGOLO
+ +
= >
= = -
em)) * ca]
/mane)
sane)
= (p](10
(p])/ (
=
18 -
+ =
+
=
(xyxy =
((x y) x y
m
· =
: y
x
+
= ,
, 22
Y
x y20
x
y2 x2
y 1
=2
4
= +
+
+ -
-
S (x y2
x
1
Z
pe X2 -0
P2
1 1 +
Y
= +
E -
+
= (
2
y2 s
G /
98
& E
= +
y = #
=
((p &
=11
ri a) 0
0
p 2 =
= =
= ,
, in
100
- >
... ..
xydxay 8 ep18
pse
= .
P &
Cosen spe
=
(n)sona) (tere]
(
= = 2)
/sxydxdy M x 3
(x 3) 00x
m =
· +
= 1 +
= , ,
((x [x
y)(m
(y s 2
m zsy
= =
0 =
X x =
:
= -
- ,
,
su)dx
= /[xxxx =
= É
# Xy2
L'ASSE f(x
RISP DISPARI
SiMMETRICO RISPETTO
Y Y)
R =
, ,
. VARIABILE
ALLA X
y-
-x) y2 xx
( z) yz0
+ +
= ,
y)
f( f(x
xyz
x)yz
( y)
x =
= =
- - - - ,
,
( xy" Axdy 0
=
,
* ((x yz)
y)e(2 v
2 1
04y
: 1
= = -
x
=
y =
-
, ,
/ [Exy](y
1
Txy" /
x)1 ya)2
xy t
* = =
-
=
/2xdxy y203
((x y)f(
: y(1
n 1 0
· X =
= x
= +
, ,
,
M 1 Y
X
= +
& 1 y
x y =
+
& &
((x V-y23
((x y)t( E
y)dxdy r a y
< y
:
· <
< x
+ = , , i
X Y
=
=1 = 1y]
/
(x [xy
mx(xy
ymxm 5
+
+ =
= 2
X 1 Y
= -
x y 1
+ =
/(x ((x
y4dxdy 23
y)EM 1zy
1
0 = =
X
: =
· =
+ , , .
)
((((x /(3x xy]
y4ex)0y 42
dy +
=
+ + +
=
=
yy]
((y 5
+ =
=