Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
BEAM-AND-SLAB DECKS MODELLED AS GRILLAGES
-MASSONNET METHOD-
* Problem: ORTHOTROPIC GRILLAGE two opposite sides SIMPLY SUPPORTED and two ends FREE loaded by SINUSOIDAL LINE LOAD
* the NODAL EQUILIBRIUM is obtained considering a GRILLAGE DECK composed of a SLAB and of LONGITUDINAL & TRANSVERSE BEAMS
* the BENDING MOMENTS in beams & crossbeams are:
Mx = -Ep ∂2w / ∂x2 My = -EJe ∂2w / ∂y2 Mxy = -GJp ∂2w / ∂x∂y Myx = -GJe ∂2w / ∂x∂ywe are assuming an 'equivalent plate'
* HP: BEAMS & CROSSBEAMS are CLOSELY SPACED
L→ we can model the discrete system as a CONTINUOUS ONE
L→ this can be done by SPREADING STATIC QUANTITIES & STIFFNESS on the relative distances
=> in this way we can substitute M & T with DISTRIBUTED MOMENTS & SHEARS per UNIT WEIGHT (m ≥ t)
mlx = -EEpb ∂2w/∂x2 + ∫p ∂2w/∂x2 ;
mxy = -GUp/bi ∂2w/∂x ∂y - ∫p ∂2w/∂x ∂y
my = -EJe ∂2w/∂y2 + ∫e ∂2w/∂y2 ;
myx = -GUe/li ∂2w/∂x ∂y - ∫e ∂2w/∂x ∂y
-∫p ∫e x (Ie + Yp) stiffness x unit height
mxy can be different from myx - different cross-section of the beams in long. and transv. direction
* SHEAR FORCES can be obtained by means of EQUILIBRIUM :
txdy
tydx
mxy dx
myxdy
tx dy dx
myx dx
(mxy + ∂mxy/∂x dx) dy
(myx + ∂mxy/∂y dy) dx
(my + ∂my/∂y dy) dx
(mx + ∂mx/∂x dx) dy
for beams we use the beam distance x for the transverse beams we use the transverse beam distance
tx = ∂mx/∂x + ∂myx/∂y ;
ty = ∂mmy/∂y + ∂mxy/∂x (a)
→ from the VERTICAL EQUILIBRIUM we can write:
∂tx/∂x + ∂ty/∂y = -ρ(x;y) (b)
* by substituting (a) and (b) in (d) we obtain the EQUILIBRIUM EQUATION for ORTHOTROPIC GRILLAGE
∫p ∂4w/∂x4 + (∫p + ∫e) ∂4w/∂x2y2 + ∫e ∂4w/∂y4 = ρ(x;y) (c)
mxy = -γp ∂2w / ∂x∂y
myz = -γe ∂2w / ∂y∂z
→ recalling that:
2α = γp + γe / √sp√se → 2α √sp√se / γp + γe = 1
→ the expression of the second mixed derivative is:
∂2w / ∂x∂y = 2d √sp√se / γp + γe ∂2w / ∂x∂y =
= 2d √sp√se / γp + γe π / ℓ ∑i pi ∂v / ∂q cos πx / ℓ
→ defining:
τα (i; j; ℓ) · b = α √e √sp π / ℓ ∂w / ∂y
then:
∂2w / ∂x∂y = 2b / γp + γe ∑ pi τα (i; j; ℓ) cos πx / ℓ
{ mxy = -2b γp / γp + γe ∑ pi τα (i; j; ℓ) cos πx / ℓ
myz = -2b γe / γp + γe ∑ pi τα (i; j; ℓ) cos πx / ℓ}
(G) Longitudinal Shear Force tx(x; y)
tx(x; y) = ∂ux / ∂x + ∂uxy / ∂y = -βp ∂3w / ∂x3 + ( -γe ∂ / ∂x ( ∂2w / ∂y2 ) ) =
= ∂ / ∂x [mx(x; y) - γe / se ∂2w(x; y) / ∂y2 ] = ∂ / ∂x [mx + se my]
→ mx = mmx ∑ pi Kα(i; j; ℓ) / ∑ pi; my = b ∑ pi Mα(j; ℓ) sen πx / ℓ
tx(x; y) = ∂mmx / ∂x ∑ pi Kα(i; j; ℓ) / ∑ pi + γe / se b · π / ℓ ∑ pi Mα(j; ℓ) cos πx / ℓ
mx = -βp ∂3w / ∂x3
my = -βe ∂3w / ∂y3
Rotational Equilibrium:
(∫z₁dz - z₂) b - (Tₓ₁ + Tₓ₁Δ Tₐ) b + M₂ + dM₂ + M₁₂ + M₁₁' + dM₁ - Mₐ₁ + qdxₑ = 0
dT₂dx - dT₁/dx b + dM₂/dx + dM₁/dx = -q e
→ Recalling that:
Tₐ = -dMₐ/dx = -EI dₓ³Uₐ/dx³ = -EI (d³Jₐ/dx³ - b d³β/dx³)
T₂ = -dM₂/dx = -EI dₓ³U₂/dx³ = -EI (d³Jₒ/dx³ + b d³β/dx³)
Mₐ = GJ dβ/dx
M₂ = GJ dβ/dx
Then:
-EI dJₒ/dx⁴ b - b²EI d³β/dx⁴ + EI/dₓ⁴ b - b²EI d³β/dx⁴ + 2GJ d²β/dx² = -q · e
→ the applied moment is taken by 2 different contribution
-2EIb d³β/dx³ + 2GJ d²β/dx² = -q · e = -m
CASE OF an ARBITRARY NUMBER OF BEAMS:
Calling:
- EKᵧₓ = 2EIb²
- GKₜ = 2GJ
- EKᵧₓ for m beams
- GKₜ = G ∑ Ji
- Kᵧₓ : moment of inertia of I-Iᵧ wrt x axis
- for m boxes we have (m-1) hinges ➔ { m-1 unknownsm-1 equations
- in MATRIX FORM we have:
γ ⋅ t = q(m-1 x m) (m-1 x 1) (m-1 x 1)
γ: TRIDIAGONAL MATRIX since each equationinvolves 3 different unknowns
PRESTRESSING FORCE in a PARABOLIC PROFILE
ΔΘ(s) ≃ ΔΘ(x₁) = ∫₀ˣ¹ k* dξ = k* x₁
P(x₁) = P₁e-μkx1 ≃ Pₐ [1 - μk* x₁]
ΔP = P₃ - P(x₁) ≃ P₃μk* x₁ — for cables tensioned from beam end Ⓐ
P - P(x;t) = P₀ - ΔP
INDETERMINATE PRESTRESSING STRUCTURES
- in STATICALLY DETERMINED structures, the load equivalent to prestressing is SELF-EQUILIBRATED
- prestressing in statically determined structures produces NO REACTIONS
- prestressing in STATICALLY INDETERMINATE structures may produce REACTIONS and ADDITIONAL INTERNAL FORCES that modify the INTERNAL STRESS DISTRIBUTION
→ the additional reaction tends to reduce the PRIMARY BENDING MOMENT
* the value of the HYPERSTATIC UNKNOWN X is given by PVW.
L we consider an AUXILIARY STRUCTURE subjected to the unitary moment X=1 and we impose the WhMt = Next
-1. ∫0ℓ - (-c . X) qθ²/ZEI [(x/ℓ) - (x'/ℓ)] dx +
+∫0a-c (-c . X)/EI dx + ∫0e (-s . X)/GJt dx
O = -cqθ²/ZEI [x²/2ℓ + x³/3ℓ²] . + c²/EI ∑ℓ + s²/GJt X [p = -cqθ²/ZEI [p ≤/ 2ℓ² p³/3ℓ²] + ∑