vuoi
o PayPal
tutte le volte che vuoi
S
i
z Ortogonal To
- ↳ the
use
CAN
We metic
projection
M ↓ E
Mxy =
I ↓ Sub
is projecting into ortogona
m space
ef X
E spaymoret
all the of
elements S So we can
&
Q Mixz z
provides
x2 x
=
> =
- space
&
That are
into
remains the elements
anly X2
I
that is
Ortoford - Bi
BMixz atter
e
Y repression
+ + = me
= have
we created
7 that
the Of
residual epression
Is
di ONTO COSTANT
The
X2
Laud we set residuaus
ONTOSONOU have
regresson We to ertogonal repressors
use
-
If like.
regression
we have
=> a
y i
p + Bzz + u
= , I
that
assumed it 20:
we and ortogonal
o
za Y
⑪ -
significa
Questo
i ⑭
auder
onto and Z perpendic
rog . -
z -
Henave Y
au -
-
-
I u
↓ ad
V e
-
u I
IN
LESIDuals CASE
THIS I ie
AnE Fi
DISTANTE SEGNATE
Le
: in VENDE &
& z e
anto
ne
regreted y -i
M - + e
n
uz =
⑭
⑤ i
onto
y
ne rec . Ez = E
+
⑭tur
ny Bri
Be
D Mixz u
= +
+
merc
use
we = =
d
Il i
of
residual y onto
a neg of
and
↳ get resduals
the
d E Miy
regressions > =
-
project The
M Onto I
WACE
Motional of
B2M disturbances
Miy +
Xz
i
=
ANE INTERESTEA
We In respuars
B2
EXTIMATING and
y XXBz
Bi
X +
+
= e
,
nun and
Onto
THE X1
we Y
regression X2
:
>
- & -
and
get
and B u
u
,
mett
s
Max Bet
↓ Mono
Me
we regr e
ge T
to &
* EWL
THEONEME
Om and e
tan
Vand y
a d
red mode4)
-
() E
- AND
Al NELETANT
OUTHERS thESE
LEVERAGE ARE
POINTS
ANE POINTS
- >
- ?
EXTIME
OR
INFWENCE
↓ ↓ this
rilevance
The autier :
of on
depends
1
B(t) -
x)
B (x XI
+
=
= hT
1 -