Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
-> LA PROBABILITA’ SI FA INTEGRANDO (DOMANDA
ESAME)
Cumulative Density Function
Preso un valore sull’asse x, la funzione ci dice qual è
la probabilità che il tempo di interarrivo sia minore o
uguale a quel valore.
e.g. in an ER, patient interarrival times
follow an exponential distribution. The
MTBA is 2.4 minutes. The probability that
if a customer has already arrived at least
another patient will arrive in the next five
minutes is: −04167(5)
(5) = 1 − = 0.8754
= 87,5% 50
Poisson Distribution The Poisson Distribution tells exactly what the
probability of having n arrivals is.
Unlike the previous ones, this is a discrete
distribution.
Interarrival time: continuous variable
Number of arrivals: discrete variable
e.g. MTBA = 2.4 min, Arrival rate = 0.4167 min^(-1)
The probability that no patients will arrive during a hour interval is:
0 −0.4167∗
(0.4167 ∗ 60) −11
(0) = = 1.39 ∗ 10
0!
Possiamo mettere a confronto la distribuzione di Poisson e quella esponenziale:
sulla parte superiore (top
view) abbiamo la
distribuzione di Poisson,
mentre nella parte inferiore
(bottom view) quella esponenziale.
Poisson processes can be:
• Homogeneous: they’re characterized by an intensity that doesn’t change overtime
λ
• Non-homogeneous: is time dependant:
λ λ = λ(t) 51
Queue configurations
Queues can be of different types:
• Single queue
Finite
o Unlimited
o
• Take a number
Finite
o Unlimited
o
• Multiple queues
Finite
o Unlimited
o Jockeying allowed
o Jockeying not allowed
o Express lane
o
Pros & Cons:
• Multiple queue
The service can be differentiated (e.g. express lanes in supermarkets)
o Labour can be divided
o The customer can choose based on his preferences
o Balking can be avoided
o
• Single queue
It’s fair
o No anxiety to look for the faster lane
o Enhanced privacy
o More efficient in terms of Wq
o
• Take a number
Customers are free to pursue some kind of diversion (= svago)
o Customers risk missing their turn
o Impulse sales
o Waiting area could be inadequate
o 52
[Single queue:
Ho una sola coda, o più server, ma tutti i server possono servire tutti i clienti che vengono messi
tutti in una stessa fila e poi via via il primo della fila raggiungerà il primo server disponibile
→
Garantiscono equità (FCFS applies to all arrivals) garantisce equità perché si applica first
come first served quindi chi prima arriva meglio alloggia, diminuiscono lo stato d’ansia perché
la coda accanto va più forte →
No cutting-in problem and reneging made difficult si scoraggia cutting in: quando sono in
coda e si libera un’altra coda qualcuno ci va e viene servito prima, ad esempio al supermercato
quando si apre una cassa e quelli dietro di te ci vanno e vengono subito serviti
→
Privacy maggiore ci si stacca da una coda e si va ad essere serviti senza avere dietro gli altri
che aspettano per lo stesso server. →
Sono più efficienti dei multiple queue in termini di tempo di attesa se una coda non ha
nessun cliente da servire rimane ferma. Wq = tempo medio di attesa in coda
Multiple queues
Ho più server e il cliente quando entra può scegliere una coda,
decide il provider se permettere cambio coda, (Jockeying), se
non vuole, può mettere pioli, (casello autostradale).
Servizio differenziato (supermercati express line per anziani,
donne in gravidanza, telepass)
→
Divisione del lavoro divisione del lavoro è possibile perché server diversi possono fare
operazioni diverse e i clienti possono essere dirottati nelle code in cui l’operatore ha le skills
necessarie a erogarli il servizio
Il cliente sceglie il provider che vuole →
Disencintiva il fenomeno del bulcking scoraggiano bulking perchè se vedo tante code
piccole tendo a mettermi in coda
Takes a number
Posso avere più server che possono servire tutti i clienti, ma
prendono un numerino e possono non stare in coda ma quando
avviene il numerino deve essere lì.
→
Cliente può distrarsi cliente mentre è in attesa in coda può
essere libero di distrarsi così da rendere l’attesa in coda più
leggero e intanto faccio altra spesa (caso supermercato)
→
Customers risk missing their turns for service cliente può rischiare di perdere il proprio turno
e ansia di non essere servito mi fa comunque aspettare lì
→
Increase impulse sales invoglia acquisti impulsivi, mentre siamo in attesa al banco della
gastronomia vedo tutto ciò che è venduto e alla fine acquisterò di più di quello che avevo
previsto
problems if the waiting area is inadequate (finite queue) 53
Concealment of the waiting line
Strategia che molti server povider implementano per allietare il tempo di attesa in fila o per farlo
percepire più breve è quella di nascondere le code.
Es. parchi a tema in cui si vede solo una parte della coda dall’esterno.
Così percepiamo l’attesa in coda più breve e si minimizza il rischio che i clienti non entrino in
coda]
Queue discipline can be:
• Static (First Come, First Serve – FCFS)
• Dynamic
Selection based on status of queue
o Number of customers waiting
▪ Round robin
▪
Selection based on individual customer attributes
o Priority
▪ Pre-emptive
▪ Processing time of customers (SPT rule)
▪
Service processes can be:
• Static Self-service
o Machine-paced
o
• Dynamic
Varying service rate
o Closing and opening service lanes
o
Poisson arrivals can be:
• Infinite queue
Exponential service time
o Single server M/M/1
▪ Multiple servers M/M/c
▪
General service time
o Single server M/G/1
▪ Self-service M/G/∞
▪
• Finite queue
Exponential service times
o 54
Single server M/M/1
▪ Multiple servers M/M/c
▪
Kendal notation: A/B/c where A: distribution of time between arrivals, B: distribution of service
times, c: number of servers.
A, B can assume: M – exponential distribution (memoryless), G – general distribution with
known mean and variance, D – deterministic distribution, Ek – Erlang distribution
QUANTO è PIU EFFICIENTE IL SUPERSERVER DEL SERVER?
Transient VS Steady state
We define:
• Transient state: it’s when the value of the operating characteristics (which refer to mean
values) depends on time
• Steady state: it's when the operating characteristics do not depend on time; the system
can be considered to be in statistical equilibrium (-> the mean value is stable)
When the system is warming up, its characteristics are usually transient. After a while, it can
achieve a statistical equilibrium in which the number of queues assumes a distribution that is
independent of the starting condition.
For any queuing system that’s reached a steady state, the following formulas apply (DA SAPERE
PER ESAME): 55
56
Sampson’s case studies
Case study #1: higher education
Higher education has expanded in recent years, mostly thanks to distance learning and for-
profit institutions. In 2005, almost 900.000 students enrolled in for-profit schools, while in 2010
they were 1.900.000.
Many of these schools now deliver online education courses and this is a classic illustration of
deservitization, which can provide higher value proposition to some customer segments.
In traditional education (universities), which is affected by costly labour and interactions,
budget constraints often lead to large lecture courses to improve efficiency. In its PCN diagram,
the provider is the university (university professor, employed as a topic expert) and the
customer is the student, who enrolls in because he is in need of knowledge. The student’s
activities are: acquire the lecture book, go to classes, take notes and, if the size class allows it,
ask questions for clarification. At the end of the semester, the student acquires the knowledge
needed for the exam and gets a grade that counts for his graduation.
This process shows some inefficiency due to the requirement for the teacher and the student
to co-locate during lessons. If the class is too big to allow questions, recording the lesson to
listen to it on a later time could give some benefit.
Professor Norm from BYU started recording his lessons and made some CDs to provide to
students so that they could rewatch the lessons at the speed they wanted and as many times
as they wanted. Even though he retired in 2011, his CDs are still around and are marketed to
universities around the world. This process proved to be superior to the previous one both in
terms of efficiency and customization, since the viewing of the lecture moved to the
independent area of the student. Also, the quality of the material on the CDs was high enough
to reduce the need of questions (direct interactions).
Finally, the internet has had a great impact on education. On-line learning is slightly different
from Norm’s one. Lessons are now served interactively, meaning that each student has to log
in into the system: students can’t sell or exchange CDs anymore, so the provider has a higher
control on the process and higher revenues. Also, by logging in, the provider can track the
students’ progress and know if they’re on schedule. Interactions are now mostly surrogate and
this is a great way to balance the trade-off between process efficiency and customization.
Traditional education institutions that rely on on-campus interactions may feel threatened by
on-line learning. Some of them are trying to fight back by making their professors port their
courses on online learning systems, which may somewhat help reduce the problem, but not
solve it: universities which do so are at a competitive disadvantage to firms that have greater
economies of scale. Professors who work in the region of direct interactions and move to the
independent one are likely to be dominated by the ones who have greater economies of scale.
57
When switching from an interactive process to an independent one, those with great
economies of scale have clear advantage. The large fixed cost of developing a high-quality
online course must be offset by a large customer base.
An alternative to moving toward independent processes is to focus on an education market that
is more resistant to deservitization.
An example of this is the “case method” developed by the Harvard Business School. Here, the
professor acquire