∫cx √3x + 4 dx = ex
∫ ex(e½ x)4 dx = e-x-a
ec dx = be√ ex-a
= 1/x4(e½ x)½ + c = (e½ 3) (1/4) + k
anal=log(c+1/x)
parametr per P (0; 1)
= tg √ dy =
= ∫ sen y dy/cos x
= ) sen y ⋅ 1/cos x dx
∫cp (cos x)
= - 1/dx (a(cos x) - x) = - log |cosx
=x/x7 dx
= ∫ x/(ex - 1.1 ec x) dx
= ∫ x/e = sen x
∫ (x - π/2) dx
= 5 (xt/g) L(x)
= ∫ sen √x/√x
= ∫ - e2cos √ π dx
= D(cos x)1/2 sen x ⋅ dx
D (cos √x) = - sen +
D (∫ F ) = ∧ ⅔
∫ ∫ x/x2 - a dx
= D (x2-a) - 2x
=1/z= cop log |x +1| - πc
= 1/X a2 dx
D (arcp x) = - 1/4 + (XX)/(4)
= 1/4 [x/(ξ x)]
dy = D(1/z) = 1/2
guarda slide
∫ 1 + X8
(Y/⋅e4) dy
D(x-e) 1/4 - (-1)e-x = -1 + e-a1
-log |X e2|1 ∫ X
y’=-e-2+x
y’≥e-x
x ex dx
D ( xx ) = ex derivata esponente
= { ∫x e x dx = ∫ex +kc
= { 1/√x cos (√x) dx
= 1/cos + = D ( tg +1 )
D ( F(x) ) = 1/2√x
= 1/√2√x dx = 2 tg √x +k
= ∫ 1/x(1+ log x)2 dx
= [ 1/x ∣ 1/MI/log2xdx ]
= D(log x) 1/1+x = … -D (arc tg+m)
- arcsen ( log x ) +xz
= ∫ ex/√1-e2x dv
= D (arcsen) = 1/√1-y
= ex = D(ex)
= ∫ ex 1/√1-I2(x) dx = arcsen (ex)
∣ cos5xdy
= [cos x ∙ cos4 x dx =
= ∫[ cos x ( 4 - sen2x)2dx = - sen x < cos4x
=∫[ 4+sen2x - sen2x ) ∙ d(sen x)
cos x dx = D (sen x)
[| (1+t2-1)dt ]
= ( devendo sudr
D ( f(x) ∙ g(x) ) - l' (x) ∙ d ( x ) + s ( x ) ∙ I ( x )
(f(x) ∙ x)( x ) = ∫(l(x) ∙ 1(x) +
f(x) ∙ I(x) ) dv
∫ l’ (x) ∙ 1(x)) dv = ∫ ( l(x) ∙ f(x) )
- ∫f ( x ) ∙ 1’ (x)) dv
lo domo denore …
1/3 e3 x2 dx =
funzione on vevnore
= ep - | x ∙ x2-3 ∣3x2 ∙ exdx
= 3 { ∫e-xx dx = 3 ∫ x-xe-x dx
{ 2n e-xdx ∫
2 ∫ x ex dx = 2 ∫ {xex - ∫ 1 ex dx} = 2 ∫ {xex - ex}dx
b(x)
= x3 e-3 - 3 ∫ x2 e-2 - xe-xy} + x 3e-3 x e-6 + 6 x e-x - 6e e-xe
⋅arcϕ π/4 4 dx
∫ arcϕ ∂ = ∫ x ⋅ e-x dx
D (e-x) = -e-x
-xe-x + ∫∫ -x ⋅ e-x dx = - x ⋅ e-x - e-x
(1) ∫ log 2y/x2 dx
D (x1/2) = 1/2 x1/2
2 ∫ 1/√x ⋅ log x ⋅ dx = 2 √x log x dx
bigop(x)
a ⋅ {∫ √x log x - ∫ √x4
∫ ex sen x ⋅ dx = ex D(sen x)
D(sen x) = cos x
Questo equivale a
cos ⋅ dx ∧ e en ∼ en x dx + c
25/11/2021
Calcolare i seguenti integrali
- ∫ 3x^2 - 8x^2 - 6x + 8 dxb = -6 c = 8b² - 4acx^2 - 6x + 8 = 0 => D => 6 ± 2 2 \ 4=> x^2 - 6x + 8x^2 - 6x + 8 => (x-2)(x-4)
Scompo: 3x - 4 A B
.........................................................
Dunque
∫ 3x - 4 = A + ∫ dx............. x - 4 x-2
- ∫ 5x + 2 x^2 + 2x - 3 dxb² - 4acx^2 + 2x - 3 = 0x= -2 ± 0 ........... 3 \ 1 -1=> x^2 + 2x - 3 = (x-1)(x+3)
Scompo: 5x + 2 = A + B............(x-1)(x-3) x - 1 x + 3
.........................................................
Dunque
∫ 5x + 2............(x-1)(x-3) dx = ∫ dx - 1/2 log|x-1| 3/4 ∫ 1 ....... x-1 + 3/4 + 3/2 x-1 13/4 log |x+3| + c
- ∫ x + 2 ........ x^2 + 2x + 5b = 4 - 3 c = -5b² < acScompo: x^2 - 2x + 5 = x^2 - 2 + (....................................=> 1/2 ∫ x(x-2) + a 5 dx
Integratore per sostituzione
Calcolare i seguenti integrali effettuando le opportune sostituzioni
\(\int \frac{x}{\sqrt{1+x^2}}\log (x)\ dx\)
sost: \(t=\log x \rightarrow e^t=x \rightarrow dx=e^t dt\)
Quindi \(\int \frac{e^t}{\sqrt{1+e^{2t}}} \cdot e^tdt = \int \frac{dt}{\sqrt{1+t^2}}\)
\(= \frac{1}{\sqrt{2}} \cdot \arctan \left(s\right)+c = \frac{1}{\sqrt{2}} \cdot \arctan \left(\frac{\log x}{\sqrt{2}}\right)+c\)
\(\int \frac{x^5}{\sqrt{1-x^2}} dx = \int \frac{x^3 \cdot x^2}{\sqrt{1-x^2}} dx\)
sost: \(t=1-x^2 \rightarrow dx = -2x\cdot dx\)
Quindi \(\int x^3\cdot dx = -\frac{1}{2} \int \frac{1-t}{\sqrt{t}}dt = \frac{1}{2} \left(-\frac{1}{3} t \sqrt{t} + \sqrt{t}\right)\)
\(=\int (1-x^2)^\frac{1}{2} = \frac{1}{4} - \frac{1}{4}\cdot\sqrt{4-x^2}+c\)
\(\int \frac{x^5}{\sqrt{x^3-4}} dx\)
Quando \(\int \frac{x^5}{x^3-4}\ dx = \frac{1}{3} \int \frac{t^{4/3}}{t} dt\)
\(= \frac{3}{5} \int \frac{1}{u} dt = \frac{1}{3} \left(-\frac{1}{3}\cdot\sqrt{5t}\right)\)
\(= \frac{1}{9} \left(\sqrt{5t}-t^{11/2}\right)+c\)
\(\int \frac{dx}{x^2 \sqrt{1+x^2}}\)
sost: \(t = \frac{1}{x} \rightarrow dt = -\frac{dx}{x}\)
\(= -\int \frac{tx\ dt}{\sqrt{1+t^2}} = -\int \frac{t}{\sqrt{t^4}}\ dx\)
\(=\frac{1}{2} \int \frac{ds}{\sqrt{15}} = \sqrt{15}+c = -\sqrt{2048t}\)2+c
\(\int \sqrt{2\cdot4-1}\ dx\)
Prova la sostituzione \(e^x\rightarrow e^xt\nabla\frac{e}{x-\sigma}\)
\(\int =5\sqrt{\nu+1}\ dx\)
prova la sostituzione
prova con
quando
a)
b)
quindi
c)
Dunque
Quindi
SW/3 = ∫W/31 dx = ∫01 dt
2cosπx+cosπx - 1 2t(2 - t)
= ∫0W/3 dt = - - ( - )
1/(2-t) 1/(1-t) 1/(2-t) 1/t)
= -1/2 ∫01 ( ) dt
( - 1) /t
= -1/2 [ log H+2] + 1/4 [ log+]W/3
= 1/2 log(2 - ) - 1/2 log
I'm unable to transcribe the text as the image is blank. Please provide an image with visible text.The image appears blank or contains only a grid. There's no transcribable text.I'm sorry, but I can't transcribe the content of this image.I'm sorry, the image provided does not contain any visible text.I'm sorry, but the image doesn't contain any visible text for transcription.I'm unable to process or identify content from an image you didn't provide. Please upload an image containing text for transcription.I'm unable to transcribe the content of this image. It appears to be blank or only contains a grid pattern. If you have another image with text, feel free to share it!I'm sorry, there is no visible text in the image.I'm unable to transcribe the text from the image you provided since it's blank. If you have another image or need further assistance, feel free to ask!I'm sorry, but the image doesn't contain any text to transcribe.I'm sorry, but the image does not contain any text for transcription. Please provide an image with text content.The image appears to be a blank grid, so there is no text to transcribe.I'm unable to provide the text as the image does not contain any recognizable content other than the watermark. If there's anything else you need, let me know!25/11/2022
Calcolare i seguenti integrali
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.