Jacko
di Giacomo Del Lungo
Immagine autore
6' di lettura 6' di lettura
Matematica indirizzo ordinario - Soluzione quesito 1

Si ha un triangolo di lati a=2; b=3 e area A=3. Si vuole determinare il terzo lato c.

Utilizzando la formula di Erone per il calcolo delle aree di un triangolo si ha:

[math]A=\sqrt{p(p-a)(p-b)(p-c)}[/math]

dove p è il semiperimetro del triangolo.

Da qui, moltiplicando e risolvendo rispetto alla c si trova l'equazione biquadratica:

[math]c^{4}-26c^{2}+169=0[/math]

Da qui si ottengono le due soluzioni reali

[math]\sqrt{13}[/math]
[math]-\sqrt{13}[/math]

di cui l'unica ammissibile è

[math]c=\sqrt{13}[/math]

Matematica indirizzo ordinario - Soluzione quesito 2

Si vuole calcolare il dominio della funzione

[math]f(x)=\sqrt{1-\sqrt{2-\sqrt{3-x}}}[/math]

Il dominio sarą ottenuto mettendo a sistema le tre seguenti disequazioni

[math] 1-\sqrt{2-\sqrt{3-x}}\geq 0[/math]
[math] 2-\sqrt{3-x}\geq 0[/math]
[math] 3-x\geq 0[/math]

Le qui soluzioni sono rispettivamente:

[math]x\leq 2[/math]
[math]x\leq -1[/math]
[math]x\leq 3[/math]

Da cui si ottiene la soluzione

[math]-1\leq x\leq 2[/math]

Matematica indirizzo ordinario - Soluzione quesito 3

Si cerca l'equazione della retta passante per il punto B(-6;-8 ) che abbia distanza massima dal punto A(2;-1).

Chiamata

[math]r: y = mx+q[/math]
la retta cercata, abbiamo, per l'appartenenza del punto B, che

[math]-8 = -6m +q[/math]
(1)

Ora dobbiamo imporre la massima distanza dal punto A di r.

La distanza č data da
[math]d=\frac{y_{0}-mx_{0}-q}{\sqrt{1+m^{2}}}[/math]
dove
[math]y_{0}[/math]
e
[math]x_{0}[/math]
sono le coordinate del punto A.
Dunque basta cercare i punti di massimo della funzione

[math]d=\frac{-1-2m-q}{\sqrt{1+m^{2}}}=\frac{7-8m}{\sqrt{1+m^{2}}}[/math]
ottenuta tenendo conto della condizione (1)

studiandone il segno della derivata

[math]d^{'}=\frac{-8\sqrt{1+m^{2}}-\frac{(7-8m)2m}{2\sqrt{1+m^{2}}}}{1+m^{2}}[/math]

Cosě facendo si ottiene

[math]m=-\frac{8}{7}; q=-\frac{104}{7}[/math]

Matematica indirizzo ordinario - Soluzione quesito 4
Di un tronco di piramide retta si conoscono l'altezza h e i lati delle basi a e b.Si Cerca il volume V.

Si ha per il volume di un tronco di piramide retto che il volume è uguale a

[math]V=\frac{h}{3}(A+a+\sqrt{A*a})[/math]

dove A e a sono le aree delle due basi, quindi nel nostro caso una sarà

[math]a^{2}[/math]
e una
[math]b^{2}[/math]

Matematica indirizzo ordinario - Soluzione quesito 5
Un aumento delle dimensioni lineari di una valigia ne causa un relativo aumento del volume e dunque della capacità.
Infatti il volume dipende linearmente da ognuna delle dimensioni della valigia. Quindi un aumento ad esempio del 10%
delle dimensioni lineari farà aumentare il volume di circa il 33%.

Matematica indirizzo ordinario - Soluzione quesito 6

Il numero più piccolo che possiamo ottenere è 1234567.

Per ottenere il numero che occupa la settima posizione basta tener presente che le permutazionipossibili
delle ultime tre cifre (5, 6 e 7) sono 6. Quindi il numero immediatamente più grande si otterrà scambiando il posto
del 4 e del 5 ed è:

1235467.

Per quanto riguarda la 721 posizione teniamo presente che 6! = 720, e sarebbero tutte le permutazioni delle ultime
sei cifre partendo sempre dal numero più piccolo possibile 1234567.

Quindi il numero che occupa la 721a posizione sarà quello ottenuto invertendo l'1 ed il 2 e cioè:

2134567.

Matematica indirizzo ordinario - Soluzione quesito 7

Abbiamo un foglio rettangolare di dimensioni a e b di aria 1 metro quadrato.

Dividendo il foglio otteniamo due rettangoli simili a quello iniziale. (Saranno quindi uguali i rapporti delle dimensioni)
Se consideriamo a il lato minore, a rimane uguale mentre b si dimezza.

Per individuare quindi le due dimensioni bisogna risolvere il sistema dato dalle due equazioni:

[math] a*b = 1 [/math]

[math] \frac{a}{b} = \frac{\frac{b}{2}}{a} [/math]

Otteniamo nella seconda:

[math] 2a^{2} = b^{2} [/math]

Risolvendo il sistema otteniamo:

[math] a = \frac{1}{\sqrt[4]{2}} [/math]
[math] b= \sqrt[4]{2} [/math]

Matematica indirizzo ordinario - Soluzione quesito 8

Vogliamo calcolare per quale valore di x positivo la funzione

[math]g(x)=\int_{0}^{x}f(t)dt[/math]
ha un minimo.

Studiamo il segno della sua derivata che è la funzione f(x).

Dal grafico vediamo che si annulla in 0, 2 e 4. Per avere un minimo, la derivata deve essere negativa prima del punto stazionario e positiva dopo. Quindi dal grafico possiamo evincere che la x positiva che corrisponde ad un minimo di g(x) è x=4.

Matematica indirizzo ordinario - Soluzione quesito 9

[math] \lim_{x \to 0} 4\frac{\sin x \cos x-\sin x}{x^{2}} = \lim_{x \to 0} 4\frac{\sin x(\cos x - 1)}{x^{2}} [/math]

Sfruttando i due limiti notevoli:

[math] \lim_{x \to 0} \frac{\sin x}{x} = 1 [/math]

e

[math] \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 [/math]

possiamo dedurre che:

[math] \lim_{x \to 0} 4\frac{\sin x \cos x- \sin x}{x^{2}} = 0 [/math]