francesco.speciale
Ominide
1 min. di lettura
Vota

Risolvere il seguente triangolo rettangolo

[math](alpha=90^circ)[/math]

[math]b=12; eta=45^circ[/math]

In questo caso ci è noto la misura del cateto e dell'angolo acuto

[math]eta[/math]

, oltre all'angolo retto

[math]alpha=90^circ[/math]

.
Quindi poichè la somma degli angoli interni di un triangolo è di

[math]180^circ[/math]

, ovvero

[math]alpha+eta+gamma=180^circ[/math]

si ha che

[math]90^circ+45^circ+gamma=180^circ => gamma=180^circ-90^circ-45^circ=45^circ[/math]

.
Pertanto

[math]gamma=45^circ[/math]

.
In un triangolo rettangolo un cateto è uguale al prodotto dell'ipotenusa
per il seno dell'angolo opposto al cateto stesso

[math]b=a\\sin (eta) => a=b/(\\sin(eta))=(12)/(\\sin(45^circ))=(12)/((\sqrt2)/2)=12\sqrt2[/math]

;
inoltre in un triangolo rettagolo un cateto è uguale al prodotto
dell'altro cateto per la cotangente dell'angolo acuto ad esso adiacente

[math]c=bcotg(eta)=12cotg(45^circ)=12 \cdot 1=12[/math]
trian_rett_trig.png

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community