_Steven
Ominide
1 min. di lettura
Vota

{etRating 3}

Calcolare la misura dell'angolo che un cateto di un triangolo rettangolo forma con l'ipotenusa, sapendo che il rapporto tra la sua proiezione sull'ipotenusa e l'altro cateto vale

[math]1/(2 \cdot \sqrt3). >hr> >p> >/p> >p> Det o A il vertice dell'angolo ret o, chiamiamo l'angolo [/math]
hat{ACB}
[math] con x (e ques o è l'angolo tra il cate o [/math]
AC
[math] e l'ipote
usa [/math]
CB
[math]). Pos o [/math]
0[math], si sa che [/math](ar{CH})/(ar{AB})=1/(2sqrt(3))
[math], con H \piede dell'altezza relativa all'ipote
usa; ma [/math]
ar{CH}=ar{AC}cosx
[math] e [/math]
ar{AH}=ar{AC}sinx
[math], considerando il triangolo ret\\tangolo [/math]
ACH
[math].>p>>/p> >p>>/p> Se ora considero il triangolo ret\\tangolo [/math]
ABH
[math], in cui [/math]
hat{HAB}
[math] è am\pio x, ho che [/math]
ar{AB}=(ar{AC}sinx)/cosx
[math].>p>>/p> >p>>/p> Ora [/math]
(ar{CH})/(ar{AB})=((ar{AC}cosx)/((ar{AC}sinx)/cosx))=1/(2sqrt(3))
[math]>p>>/p> >p>>/p> cioe [/math]
(cos^2x)/(sinx)=1/(2sqrt(3))
[math]

Risolvendo l'equazio
e troviamo l'am\piezza di x.

Facciamo il denomin a ore comu
e, po
endo [/math]
sinx!=0
[math].
Ottieniamo:>p>>/p> >p>>/p> [/math]
2sqrt(3)cos^2x-sinx=0
[math]>p>>/p> >p>>/p> Ora ricordiamo che [/math]
cos^2x=1-sin^2x
[math], perciò [/math]
2sqrt(3)-2sqrt(3)sin^2x-sinx=0
[math].>p>>/p> Ordin ando e cambiando i segni:>p>>/p> >p>>/p> [/math]
2sqrt(3)sin^2x+sinx-2sqrt(3)=0
[math]>p>>/p> >p>>/p> Ora applicando la formula risolutiva:>p>>/p> >p>>/p> [/math]
sinx=(-1+-sqrt(1+48))/(4sqrt(3))=(-1+-7)/(4sqrt(3))
[math]>p>>/p> >p>>/p> [/math]
sinx=-2sqrt(3)/3
[math] che non è accettabile>p>>/p> >p>>/p> [/math]
sinx=sqrt(3)/2
[math], da cui [/math]
x=60°$

FINE

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community