Calcolare il valore esatto delle funzioni goniometriche del seguente arco:
[math]48^circ[/math]
. Svolgimento
Osserviamo che[math](48^circ)=(30^circ)+(18^circ)[/math]
; per le formule di addizione del seno, coseno e tangente, si ha:
[math]\\sin(\alpha+\beta)=\\sin(\alpha)\\cos(\beta)+\\cos(\alpha)\\sin(\beta)[/math]
[math]\\cos(\alpha+\beta)=\\cos(\alpha)\\cos(\beta)-\\sin(\alpha)\\sin(\beta)[/math]
[math]tg(\alpha+\beta)=(tg(\alpha)+tg(\beta))/(1-tg(\beta)tg(\alpha))[/math]
Nel nostro caso [math]\alpha=30^circ , \beta=18^circ[/math]
, sostituendo otteniamo
[math]\\sin(48^circ)=\\sin(30^circ+18^circ)=\\sin(30^circ)\\cos(18^circ)+\\cos(30^circ)\\sin(18^circ)=[/math]
[math]=1/2(1/4(\sqrt{10+2\sqrt5}))+(\sqrt3)/2 \cdot 1/4(\sqrt5-1)=(\sqrt{10+2\sqrt5})/8+(\sqrt(15)-\sqrt3)/8=1/8(\sqrt{10+2\sqrt5}+\sqrt(15)-\sqrt3)[/math]
.
[math]\\cos(48^circ)=\\cos(30^circ+18^circ)=\\cos(30^circ)\\cos(18^circ)-\\sin(30^circ)\\sin(18^circ)=[/math]
[math]=(\sqrt3)/2 \cdot {1/4(\sqrt(10+2\sqrt5))}-1/2 \cdot 1/4(\sqrt5-1)=(\sqrt3)/8(\sqrt(10+2\sqrt5))-1/8(\sqrt5-1)=1/8(\sqrt(3(10+2\sqrt5))-\sqrt5+1)[/math]
.
[math]tg(48^circ)=tg(30^circ+18^circ)=(tg(30^circ)+tg(18^circ))/(1-tg(18^circ)tg(30^circ))=[/math]
[math]=((\sqrt3)/3+\sqrt{1-2/5\sqrt5})/(1-(\sqrt3)/3 \cdot (\sqrt{1-2/5\sqrt5}))=((\sqrt3+3\sqrt{1-2/5\sqrt5})/3)/((3-\sqrt3-6/5\sqrt5)/3)=[/math]
[math]=(\sqrt3+3\sqrt{1-2/5\sqrt5})/(3-\sqrt3-6/5\sqrt5)[/math]
.