_francesca.ricci
Ominide
2 min. di lettura
Vota

Il rettangolo ha l'area di

[math]558cm ^2[/math]

e un lato di

[math]18cm[/math]

. Lo si vuole trasformare in un nuovo rettangolo c accorciando il lato più lungo di una quantità

[math]5x[/math]

e allungando l'altro di una quantità

[math]4x[/math]

in modo che il nuovo rettangolo abbia l'area di

[math]228cm^2[/math]

. Determina la quantità

[math]x[/math]

.

Risoluzione

Per prima cosa, conoscendo l'area ed un lato del rettangolo, possiamo determinare la lunghezza dell'altro lato:

[math] \bar{AB} = frac(A_(ABCD))(\bar{BC}) = frac(558 cm^2)(18 cm) = 31 cm [/math]

Per creare il nuovo rettangolo, dobbiamo accorciare il lato più lungo di

[math]ABCD[/math]

(

[math] \bar{AB} = 31 cm [/math]

) di una quantità pari a

[math]5x[/math]

, e allungare il lato più corto (

[math] \bar{BC} = 18 cm [/math]

) di una quantità pari a

[math]4x[/math]

, in modo tale che la sua area, cioè il prodotto dei due lati, sia pari a

[math]228 cm^2[/math]

.

Possiamo impostare il problema in questo modo, chiamando il nuovo rettangolo

[math]A'B'C'D' [/math]

:

[math] \bar{A'B'} = \bar{AB} - 5x [/math]

[math] \bar{B'C'} = \bar{BC} + 4x [/math]

Quindi:

[math] \bar{A'B'} = 31 - 5x [/math]

[math] \bar{B'C'} = 18 + 4x [/math]

Sapendo che

[math] A_(A'B'C'D') = \bar{A'B'} \cdot \bar{B'C'} [/math]

, possiamo impostare l'equazione:

[math] (31 - 5x)(18 + 4x) = 228 [/math]

[math] 558 - 90x + 124x - 20x^2 = 228 [/math]

[math] - 20x^2 + 34 x - 330 = 0 [/math]

[math] 10x^2 - 17 x + 165 = 0 [/math]

Troviamo le soluzioni con la formula

[math] x = frac(- b ± \sqrt{b^2 - 4ac})(2a) [/math]

[math] x = frac(- (-17) ± \sqrt{(-17)^2 - 4 \cdot 10 \cdot 165})(2 \cdot 10) = frac(17 ± \sqrt(289- 6600))(20) = [/math]

[math] frac(17 ± \sqrt{6889})(20) = frac(17 ± 83)(20) [/math]

[math] x = frac(17 + 83)(20) = frac(100)(20) = 5 [/math]

[math] x = frac(17 - 83)(20) = - frac(66)(20) = - (33)/(20) [/math]

Dato che il problema chiede di allungare e accorciare i lati del rettangolo, dobbiamo scartare il valore negativo di

[math]x[/math]

; accettiamo solo

[math]x=5[/math]

.

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community