Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
BIBLIOGRAFIA
Akman, I., & Mishra, A. (2017). “Factors influencing consumer intention in social
commerce adoption”. Information Technology & People.
Algesheimer, R., Dholakia, U. M., & Herrmann, A. (2005). “The social influence of brand
community: Evidence from European car clubs”. Journal of marketing, 69(3), 19-34.
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news
and opinion on Facebook. Science, 348(6239), 1130-1132.
Bharadwaj, N., Ballings, M., Naik, P. A., Moore, M., & Arat, M. M. (2022). “A New
Livestream Retail Analytics Framework to Assess the Sales Impact of Emotional
Displays”. Journal of Marketing, 86(1), 27-47.
Carlson, B. D., Suter, T. A., & Brown, T. J. (2008). “Social versus psychological brand
community: The role of psychological sense of brand community”. Journal of business
research, 61(4), 284-291.
Chae, I., Stephen, A. T., Bart, Y., & Yao, D. (2017). “Spillover effects in seeded word-
of-mouth marketing campaigns”. Marketing Science, 36(1), 89-104.
Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in
virtual communities: An integration of social capital and social cognitive
theories. Decision support systems, 42(3), 1872-1888.
Dessart, L., Veloutsou, C., & Morgan-Thomas, A. (2020). “Brand negativity: a relational
perspective on anti-brand community participation”. European Journal of Marketing.
Doong, S. H. (2021). “Comparing the effect of interactivity and reputation on purchase
intention in live commerce: a serial mediation study”. Journal of Marketing Analytics, 1-
12. 42
Druckman, J. N., & Green, D. P. (2013). Mobilizing group membership: The impact of
personalization and social pressure e-mails. Sage Open, 3(2), 2158244013492781.
Dwyer, R. J., Kushlev, K., & Dunn, E. W. (2018). Smartphone use undermines enjoyment
of face-to-face social interactions. Journal of Experimental Social Psychology, 78, 233-
239.
Dyer, J. H., & Nobeoka, K. (2002). Creating and managing a high‐performance
knowledge‐sharing network: the Toyota case. Strategic management journal, 21(3), 345-
367.
Goh, J. X., Hall, J. A., & Rosenthal, R. (2016). Mini meta‐analysis of your own studies:
Some arguments on why and a primer on how. Social and Personality Psychology
Compass, 10(10), 535-549.
Hamilton, W. A., Garretson, O., & Kerne, A. (2014). “Streaming on twitch: fostering
participatory communities of play within live mixed media. In Proceedings of the
SIGCHI conference on human factors in computing systems” (pp. 1315-1324).
Hassanein, K., & Head, M. (2007). Manipulating perceived social presence through the
web interface and its impact on attitude towards online shopping. International journal
of human-computer studies, 65(8), 689-708.
Hu, M., Zhang, M., & Wang, Y. (2017). Why do audiences choose to keep watching on
live video streaming platforms? An explanation of dual identification
framework. Computers in Human Behavior, 75, 594-606.
Kuo, Y. F., & Feng, L. H. (2013). Relationships among community interaction
characteristics, perceived benefits, community commitment, and oppositional brand
loyalty in online brand communities. International Journal of Information
Management, 33(6), 948-962.
Lee, C. H. (2008). The effects of price consciousness, brand consciousness and familiarity
on store brand purchase intention. Management Review, 27(3), 21-40. 43
Liang, J., Chen, Z., & Lei, J. (2016). “Inspire me to donate: The use of strength emotion
in donation appeals”. Journal of Consumer Psychology, 26(2), 283-288.
Lin, Y., Yao, D., & Chen, X. (2021). “Happiness begets money: Emotion and engagement
in live streaming”. Journal of Marketing Research, 58(3), 417-438.
Lv, Z., Jin, Y., & Huang, J. (2018). How do sellers use live chat to influence consumer
purchase decision in China?. Electronic Commerce Research and Applications, 28, 102-
113.
Luzsa, R., & Mayr, S. (2021). False consensus in the echo chamber: Exposure to
favorably biased social media news feeds leads to increased perception of public support
for own opinions. Cyberpsychology: Journal of Psychosocial Research on
Cyberspace, 15(1).
McAlexander, J. H., Schouten, J. W., & Koenig, H. F. (2002). Building Brand
Community. Journal of Marketing, 66(1), 38–54.
Melumad, S., Inman, J. J., & Pham, M. T. (2019). Selectively emotional: How
smartphone use changes user-generated content. Journal of Marketing Research, 56(2),
259-275.
Mulier, L., Slabbinck, H., & Vermeir, I. (2021). “This way up: The effectiveness of
mobile vertical video marketing”. Journal of Interactive Marketing, 55, 1-15.
Otterbring, T., Ringler, C., Sirianni, N. J., & Gustafsson, A. (2018). “The Abercrombie
& Fitch effect: The impact of physical dominance on male customers' status-signaling
consumption”. Journal of Marketing Research, 55(1), 69-79.
Park, E., Rishika, R., Janakiraman, R., Houston, M. B., & Yoo, B. (2018). “Social dollars
in online communities: The effect of product, user, and network characteristics”. Journal
of Marketing, 82(1), 93-114. 44
Roma, P., & Aloini, D. (2019). How does brand-related user-generated content differ
across social media? Evidence reloaded. Journal of Business Research, 96, 322-339.
Ross, L., Greene, D., & House, P. (1977). The “false consensus effect”: An egocentric
bias in social perception and attribution processes. Journal of experimental social
psychology, 13(3), 279-301.
Schramm, H., & Hartmann, T. (2008). The PSI-Process Scales. A new measure to assess
the intensity and breadth of parasocial processes.
Scoppa, V. (2021). “Social pressure in the stadiums: Do agents change behavior without
crowd support?”. Journal of economic psychology, 82, 102344.
Sridhar, S., & Srinivasan, R. (2012). “Social influence effects in online product
ratings”. Journal of Marketing, 76(5), 70-88.
Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal
of communication, 42(4), 73-93.
Stuppy, A., Mead, N. L., & Van Osselaer, S. M. (2020). “I am, therefore I buy: Low self-
esteem and the pursuit of self-verifying consumption”. Journal of Consumer
Research, 46(5), 956-973.
Sun, Y., Shao, X., Li, X., Guo, Y., & Nie, K. (2019). How live streaming influences
purchase intentions in social commerce: An IT affordance perspective. Electronic
Commerce Research and Applications, 37, 100886.
Sunder, S., Kim, K. H., & Yorkston, E. A. (2019). “What drives herding behavior in
online ratings? The role of rater experience, product portfolio, and diverging
opinions”. Journal of Marketing, 83(6), 93-112.
Togawa, T., & Sugitani, Y. (2021). “Looks Far Beyond My Reach: The Zoom Effect in
Product Videos Influences Luxury Perception and Purchase Intention”. Journal of
Consumer Psychology. 45
Tonietto, G. N., & Barasch, A. (2021). Generating content increases enjoyment by
immersing consumers and accelerating perceived time. Journal of Marketing, 85(6), 83-
100.
Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building
consumer trust and engagement with social commerce sellers. Journal of Business
Research, 117, 543-556.
Wongkitrungrueng, A., Dehouche, N., & Assarut, N. (2020). “Live streaming commerce
from the sellers’ perspective: implications for online relationship marketing”. Journal of
Marketing Management, 36(5-6), 488-518.
Xu, X., Wu, J. H., & Li, Q. (2020). What drives consumer shopping behavior in live streaming
commerce?. Journal of Electronic Commerce Research, 21(3), 144-167.
Zhang, Q., Wang, W., & Chen, Y. (2020). “Frontiers: In-Consumption Social Listening
with Moment-to-Moment Unstructured Data: The Case of Movie Appreciation and Live
Comments”. Marketing Science, 39(2), 285-295.
Zhang, Y., Trusov, M., Stephen, A. T., & Jamal, Z. (2017). “Online shopping and social
media: friends or foes?”. Journal of Marketing, 81(6), 24-41. 46
SITOGRAFIA
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/its-
showtime-how-live-commerce-is-transforming-the-shopping-experience
https://www.casaleggio.it/wp-content/uploads/2020/12/CA-E-commerce-2021-report-
ITA__WEB.pdf
https://www.vanityfair.it/beauty/make-up/2020/11/03/chiara-ferragni-collezione-make-
up-lancome-x-chiara-ferragni-2020-trucco
https://www2.deloitte.com/us/en/insights/industry/technology/svod-social-media-
gaming-
trends.html?id=us:2el:3pr:4diUS164644:5awa:6di:MMDDYY:&pkid=1008085&utm_s
ource=newsletter&utm_medium=email&utm_campaign=newsletter_axiosgaming&stre
am=top
https://www.ft.com/content/4e91112c-8f99-422e-be3c-d9e6ad686cdd
https://www.forbes.com/sites/michellegreenwald/2020/12/10/live-streaming-e-
commerce-is-the-rage-in-china-is-the-us-next/?sh=647656956535
https://www.forbes.com/sites/laurenhallanan/2021/03/24/gamification-ar-and-
giveaways-how-china-is-upleveling-the-live-commerce-experience/?sh=4606340136c2
https://www.forbes.com/sites/laurenhallanan/2021/06/21/sales-associate-live-streaming-
has-become-a-must-have-for-brands-in-china/?sh=70162afa327c
https://www.emarketer.com/chart/249138/which-types-of-inaccurateinappropriate-user-
generated-content-do-us-consumers-most-frequently-come-across-of-respondents-june-
2021 47
48
APPENDICE
Appendice 1 – Questionario Pre-Test Qualtrics 49
50
51
Appendice 2 – Scenari Pre-Test e Studio Principale
Di seguito il link per la visualizzazione completa dei quattro scenari:
https://drive.google.com/drive/folders/1VjQVKeWJ5kJQT6XuMQmXJrsl5KXfTBGY?
usp=sharing VIDEO 1 VIDEO 2
Community Interaction - alta Community Interaction – alta
Visione condivisa - presente Visione condivisa – assente 52
VIDEO 1 VIDEO 2
Community Interaction - bassa Community Interaction – bassa
Visione condivisa - presente Visione condivisa – assente 53
Appendice 3
Statistiche descrittive – Età
N Minimo Massimo Media Deviazione
std.
Età (in 52 22 52 24,46 4,01
numero)
Numero di 52
casi validi
(listwise)
Frequenze - Genere
Frequenza Percentuale Percentuale Percentuale
valida cumulativa
Uomo 19 36,5 36,5 36,5
Donna 33 63,5 63,5 100,0
Totale 52 100,0 100,0 54
Appendice 4
Statistiche di gruppo – Variabile Indipendente
Interazione N Media Deviazione Errore
std. standard
della
media
VarIndipendente Alta 27 4,7963 1,75554 0,33785
Bassa 25 3,3500 1,58607 0,31721 55
Test campioni indipendenti – Variabile Indipendente
Test t per l’uguaglianza delle medie Intervallo di
Test di Levene per
l’uguaglianza delle confidenza della
varianze differenza di 95%
F Sign. t gl S