vuoi
o PayPal
tutte le volte che vuoi
VALORE ASSOLUTO
k is a the variable on the other hand of the disequation
If K ≥0 ⋃
¿ (x)∨≥0
g g( x)≤−K g(x) ≥ K
| |
( ) ( )
< −K
g x 0 ≤ g x ≤ K
If K<0 ∀ ∈
¿ (x)∨≥0 x R
g
| |
( ) ∄
<
g x 0
STUDIO DEL DOMINIO
intersection doesnt allow to the value to be reported in the
the
∙∩∘=∘
graph the intersection allows the value to be reported on the graph
∘∪ ∙=∙
DERIVATE STANDARD
f(x) f’(x)
n 0
X 1
2x
2
x n n−1
x x∗x
x x
e e
x x
∗ln
a a a
Ln(x) 1/ X
log 1/x*ln(a)
(x)
a
√ ( )
√
X 1 / 2 X
|x| |x|/x
Sin(x) Cos(x)
√
Arc sin x) 1/ 2
1−x
Cos(x) -sin(x)
√
Arc cos (x) -1/ 2
1−x
Tg(x) 2 2
1/ (x)+1
(x )¿
cos tg
( )
Arc tg(x) 2
1 / 1+ x
DERIVATE TEOREMI
Linearity '
( ) ' '
( ) ( ) ( ) ( )
=f
f g ± f x g ± f x
Homogeneity (“a” is a constant)
(a∗g( ))'=a∗g (x) ¿
x '
Multiplication/division
'
( ) ' '
( )∗f ( ) ( )∗f ( )+ ( )∗g ( )
=f
f g x g x f g x
( )
' 2
' '
( ) ( )
= ∗g−f ∗g
f / g f / g x
DERIVATE COMPOSTE '
√ √
( ) ( )
1. ( ) ( )
=1 ∗g )
g x / 2∗ g x '( x
x
( )
ln g(¿)
2. ¿
¿
¿
x
( )
(¿)
arc tg g
3. ¿
¿
¿
( )
√
' ( )
( )
( ) 2 '
4. ( ) ( ) ( )
=1 ∗g
arc sin g x / 1−g x x
( )
'
( ) 2 '
5. ( ) ( ) ( )
=−1 ∗g
6 1 / g x / g x x
'
( )
( ) ( ) '
6. ( ) ( ) ( )
=cos ∗g
sin g x g x x
'
( )
( ) ( ) '
7. ( ) ( ) ( )
=−sin ∗g
cos g x g x x
'
( ) '
8. ( ) ( )
g x g x ( )
=e ∗g
3. e x
( )
' '
( ) ( )
( ) ( ) ( ) ( ) ( )∗ ( )
g x ∗g +f
( )
g x f x x x g x
9. ( ) ( )
=e ∗ln −→e
f x f x
ESPONENZIALIF(x)=y IMP
x <0
e IMP
x =0
e verified for every x inside R
x >0
e
FUNZIONI RADICE X<0 impossible X=0 possible
x>0 possible
¿
0 ,+ ∞¿
ID= { }
∈ =¿
x R : x ≥ 0
included ; inf. Excluded (because it
0
is not calculable)
LOGARITMO y=ln(x)
¿
ID: ¿
0 ,+∞
¿
If x=0 ln(x)= IMP
If x=1 ln(x)=0
Ln(x)<0 0<x<1
Ln(x)>0 x>1
Ln(a/b) = ln(a)-ln(b)
Ln(a*b) =ln(a)+ln(b)
Ln(x)=a x=
a
e
LIMITI ( )=0−¿
f x ¿
lim
x→+∞
( )=0+ ¿
f x ¿
lim
x→−∞ ( )=−∞
x → 1−¿ f x
¿
lim
¿ ( )=+∞
¿
x → 1+ f x
¿
lim
¿ ( )=−∞
x → 0+¿ f x
¿
lim
¿ ( ) =+∞
x → 0−¿ f x
¿
lim
¿
x =0+ ¿
e ¿
lim
x →−∞ x =+∞
lim e
x →+∞ ( )=−π
lim arctg x / 2
x →−∞ ( )=π
lim arctg x / 2
x →+∞
ASYMPTOTE
( ) =±
lim f x ∞ is a vertical asymptote
x=k
x→ k ( ) =k
lim f x is a horizontal asymptote
y=k
x →± ∞ the asymptote is
+∞ ∞
e the asymptote is 0+
−∞
e
INDETERMINATE FORM
0 / 0 , ∞ / ∞ , 0−∞ , 0∗∞
Simplify grupping the x with the major exponential and continuing the process
since you can reach a determinate one
ORDER OF INFINITE
The major order will be higher in the evaluation of the indeterminate form
It works only if y>0
x
1. y=e
3
2. y=e
2
3. y=e
1
4. y=e