Anteprima
Vedrai una selezione di 6 pagine su 21
Teoremi e definizioni di Advanced Mathematics Pag. 1 Teoremi e definizioni di Advanced Mathematics Pag. 2
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Teoremi e definizioni di Advanced Mathematics Pag. 6
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Teoremi e definizioni di Advanced Mathematics Pag. 11
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Teoremi e definizioni di Advanced Mathematics Pag. 16
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Teoremi e definizioni di Advanced Mathematics Pag. 21
1 su 21
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

THEOREMS AND DEFINITIONS

CHAPTER 1

DEF. 245) Given a vector space V, a positive function ||.|| is said to be a norm if:

  • i) ||v|| = 0 ⇒ v = 0
  • ii) ||v + w|| ≤ ||v|| + ||w|| ∀v,w ∈ V
  • iii) ||λv|| = |λ| ||v|| ∀λ ∈ ℝ, ∀v ∈ V

DEF. 247) A vector space endowed with a norm ||.|| is called normed vector space.

LM. 248) Let (V, ||.||) be a normed vector space. The function d: V x V → ℝ defined by

d(v,w) = ||v - w|| ∀v,w ∈ V

is a distance with two additional properties:

  • i) Translation invariance (d(v+x, w+x) = d(v,w))
  • ii) Homogeneity (d(λv, λw) = |λ| d(v,w))

Not all distances in metric spaces are induced by norms.

DEF. 252) A normed vector space whose metric is complete is called a Banach space.

LM. 257) We have | | || || - || || ≤ || - ||

PROP. 259) A linear operator T: V4 → V2 between N.V.S. is continuous at a point v ∈ V4 ⇔ it is continuous ∀ V1.

DEF. 260) An operator T: V4 → V2 is called bounded if

∃K > 0 s.t.

||T(v)||2 ≤ K ||v||4 ∀v ∈ V4

LM. 261) A linear operator T: V4 → V2 between N.V.S. is bounded ⇔ the image of any bounded subset of V4 is a bounded subset of V2.

TH. 263) A linear operator T: V4 → V2 between N.V.S. is continuous ⇔ it is bounded.

DEF.) The topological dual V* of a N.V.S. is the set of...

(OF ALL CONTINUOUS AND LINEAR FUNCTIONALS DEFINED ON V IT IS A VECTOR SUBSPACE OF THE ALGEBRAIC DUAL V'. THE DEFINITION IS ANALOGOUS FOR THE SET OF ALL CONTINUOUS AND LINEAR OPERATORS BETWEEN N.V.S. VA AND VB, B(VA, VB).

LM. 267)

LET T ∈ B(VA, V2), THE SET

{k ≥ 0 | ||T(v)||2 ≤ k ||v||A ∀ v ∈ VA}

HAS A MINIMUM.

PROP. 269)

THE FUNCTIONAL ||·|| : B(VA, V2) → ℝ, DEFINED BY

||T|| = min{k ≥ 0 | ||T(v)||2 ≤ k ||v||A, ∀ v ∈ VA}

IS A NORM.

PROP. 270)

LET T ∈ B(VA, V2), IT HOLDS:

||T|| = sup{||T(v)||2, \( v ∈ VA, ||v||A = 1 \)}

= sup{||T(v)||2, \( v ∈ BVA \)}

= sup{||T(y)||2, \( y ∈ SVA \)}

TH. 273)

IF V2 IS A BANACH SPACE, ALSO THE N.V.S. B(VA, V2) IS A BANACH SPACE.

PROPERTIES)

||T + S|| ≤ ||T|| + ||S||

||TS|| ≤ ||T|| ||S||

\( (S ∈ B(VA, V2), T ∈ B(V2, V3)) \)

CHAPTER 8

DEF.)

IN ITS GENERAL FORM, AN EQUATION CAN BE WRITTEN AS

l(x) = y0

DEF.)

THE INVERSE CORRESPONDENCE \( l^{-1} : Y \rightarrow 2^X \) IS DEFINED BY

\( l^{-1}(y) = \{x ∈ X | \phi(x) = y\} \) ∀ y ∈ Y

DEF.)

l IS WEAKLY INVERTIBLE AT y ∈ Y IF l-1(y) IS NOT EMPTY (I.E., l IS SURJECTIVE W.R.T. & EXIST; y ∈ Y). l IS INVERTIBLE AT y ∈ Y IF l-1(y) IS A SINGLETON (I.E., l IS BIJECTIVE W.R.T. & EXIST; y ∈ Y). IF THESE HOLD ∀ y ∈ Y, l IS (WEAKLY) INVERTIBLE. IT IS WELL POSED IF l-1 ∈ B(X,Y) IS A CONTINUOUS FUNCTION.

TH. 337) A selfmap T:B(x)→B(x) is a β-contraction wrt the Blackwell

Sudnorm if it satisfies.

i) Monotonicity f(x) ≤ g(x) ⇒ T(f)(x) ≤ T(g)(x)

ii) Discounting Property: T(f+c) ≤ T(f)+βc ∀c≥0, β∈(0,1)

DEF.) The solutions of the Bellman equation are the fix points of the Bellman operator

T(f)(x):= sup {(x,y)+βf(y)} y∈P(x)

LM. 338) The Bellman operator is a β-contraction provided β∈(0,1) and is bounded.

PROP. 339) Then by B.C.T, the Bellman solution has a unique and globally attracting solution (because B(x) is a Banach space if X is a Banach space).

CHAPTER 11

DEF. 362) Let f:A⊆X→ℝ be a real valued function and

Let C be a subset of A. An element x̂∈C is a local (global) maximum of f on C if

f(x̂) ≥ f(x) ∀x∈C

The value f(x̂) is called maximum value of f on C.

PROP. 364) A point of maximum is strong (f(x̂)>f(x) ∀x∈C) ⇔ it is unique.

PROP. 365) Let g:B⊆ℝ→ℝ be a strictly increasing function with inf f∈B, the two problems of optimum

maxx sup f(x) x∈C

and

maxx sup (g∘f)(x) x∈C

are equivalent, that is, they have the same solution.

PROP. 366) Given f:A⊆X→ℝ, let C and C' be two any set

such that C⊆C'⊆A. We have

maxx∈C f(x) ≤ maxx∈C' f(x)

DEF.) The problem can thus be described as:

maxxt,d U(xt;d)

sub (xt,d) ∈ X ×D

DEF.) The dp problem is a special parametric optimization problem. Consider the feasibility correspondence

C(x0) = {(xt,d) ∈ X ×D |xt+1 = ℓ(xt,dt) and dt(x) ∀x∈X0 given }

then the problem can be written as

maxxt,d U(xt;d)

sub (xt,d) ∈ C(x0)

DEF.) The extended value function V: X→ℝ is given by

V(x0) = sup(xt,d)∈C(x0) U(xt;d)

DEF.) The problem dp is uniquely controlled if there is a unique dt that moves the system from state x to a certain state xt+1. Formally, ∀x∈X

ℓ(x;dt) = ℓ(xt;d' ) ⇒ dt=d' t.d.d∈ d(x)

There is a function g: X×X→D s.t.

ℓ(x,g(x;y))=y ∀x,y∈X

If the problem is not uniquely controlled, this function is a correspondence.

DEF.) The reduced form of a problem dp is given by

i) A space X of system states, who play the role of decision variables

ii) A dynamic constraint correspondence P: X→2X that connects the current state xt with the states xb that can be reached after xt.

iii) An intertemporal index Φ: Ω ⊂ X → ℝ given by

Φ(x) = ∑k=0βkφ(xk,xk+1)

GOING BACK TO PARAMETRIC MAXIMIZATION PROBLEMS, IF WE CAN ALSO CHOOSE THE PARAMETER, WE HAVE

MAX f(x;θ)x,θ SUB x ∈ f(θ), θ ∈ Θ

OR

MAX f(x;θ)x,θ SUB (x,θ) ∈ GFL

THEN, BY PROP. L 41

SUP(x;θ)∈GFL f(x;θ) = SUPθ∈Θ (SUPx∈f(θ) f(x;θ)) = SUPθ∈Θ V(θ)

DEF.) IN DYNAMIC PROGRAMMING, WE USE TWO STEPS:

  1. WE PARAMETERIZE THE PROBLEM BY TAKING X₀ AND τ AS PARAMETERS
  2. WE DECOMPOSE THE PROBLEM IN TWO STAGES

DEF.) WE WANT TWO ASSUMPTIONS TO HOLD:

  1. ∀x₀∈X, THE SET

(x₀) = {x∈x | xn+1∈ β(xn) ∀n≥0, x₀∈X GIVEN }

'FEASIBLE PATHS STARTING FROM X₀

IS NONEMPTY.

  1. ∀x₀∈X, V(x₀)<+∞

⇒ V: X→ℝ IS DEFINED ∀ x₀∈X. ASS. 2 REQUIRES THAT

THE SERIES ϕ(x) = ∑n=0 βⁿ φ(xn, xn+1) CONVERGES ∀ x∈(x₀)

LM. 473) IF x₀∈X, ∃Nx₀>0 |

ϕ(xn, xn+1) ≤ Nx₀ ∀ x∈(x₀), ∀n≥0

THEN ASS. 2 HOLDS.

LM. 474) IF ϕ GFL→ℝ IS BOUNDED, THEN V: X→ℝ IS BOUNDED.

GIVEN A PATH X = {x₀, x₁, ....} ∈ x, THE SHIFTED PATH IS

SX = {x₁, x₂, ....]

THE SHIFT OPERATOR S: x→x DEFINED BY

S(x) = lim X

SHIFTS THE PATH ONE PERIOD AWAY.

TH. 475) THE VALUE FUNCTION V: X→ℝ OF PROBLEM RF SATISFIES THE BELLMAN EQUATION. THAT IS

Dettagli
A.A. 2019-2020
21 pagine
SSD Scienze economiche e statistiche SECS-S/06 Metodi matematici dell'economia e delle scienze attuariali e finanziarie

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher bindi.federico di informazioni apprese con la frequenza delle lezioni di Advanced Mathematics for Social Sciences e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università Commerciale Luigi Bocconi di Milano o del prof Vegni Federico Mario Giovanni.