vuoi
o PayPal
tutte le volte che vuoi
ARMONICA 1 -1
= []
P)]=
=
u :
(2 1
-
[(54 15)
(0 75
(7) =
=
+ .
+
GEOMETRICA I 0
=
i 9 2
P(i) 108 158
4 2
50 8
.
wo : . .
X =
=
= .
. .
i 1
= 2
S
QUADRATICA =
(Pki))] [520 252
[ 6520
4)
(102
4)
me 0
+ +
= · .
. .
V55 7
9
= .
MODA G5 10] BIMODALE
Xero >
= ; -
limm1 15
Max =
x
=
to
1-
lin <Min 5
ms = =
8 + 00 a)
g(M
Yk)
g(x1
MEDIA 4
DI 4
, . .
x2 =
-
. ..
.
.
, ,
, ,
CHISINI 83jxa)
(x1 50w +
x2
9) ...
j
; = X4
wi C 50x
=
i 1
=
M)
g(x1jx2jxjxa) g( 4
u
= , ,
,
=
C 50
50
& Wi
i 1
= Mwi
: =
wi i 1
=
un 12
↳ N =
& -?
-1 M N
wi
X : =
.
1
i = 1
M-1 =
_
M i P(xi)
↳
(m-1)-1 pi)]
[
= pi)]
[
M = P(xi) wi/N
Xi wi =
3/12
0
S 25
0
= .
3112 25
0
= . 35
112
70 9 2
0 0
= .
. 15
90E 2112 =
0 0
. .
(+
W = 1
(1 -
591 63
0
=
. .
[bx) G
4 a +
= bil's
= = wi
Cist wi +
i a
.
(x M)
Xk) g(M
g) ,
1 =
-
. .
. .
.
.
. =
[a (Dxi)] M]
+
wi
+ · a
=
wi (pi
(bi wi] +
wi
+ . wi
K + (bi)"
-
& wwi
i 1
=
Dwi wi
i 1
=
13 b
wi Wi
i 1
=
~
-N
EX: wi 43
=
1
i = =
M3 Qui P(i)
43 Xi
E
= i 1
=
K
EXi
M pi)
= i 1
= P(i)]
(43)113 [x * >1 >
: =
= =
Piyte
[x
me .
= 113
(bx)
Y a +
= =
)
(1 4k iwi
g . . .
.
.
K =
(bx)11]wi
& [a +
i = 1 ai
=
a wi d 113 mi
- . ,
.
i i
= 1 1
= wi
b Mi
.
.
* 1 !
i
: N
x = .
i 1
= PY
- 1
113 >
(ui-
↑ :
[
(MB)" = 1
M1130 = 3
ESERCITAZIONE 1
.
"Student"
In
y -
= - "STUDENTEsse"
Ye 23]
[10 ;
x1 =
- 25]
22
x x2 ;
= - =
I 30]
X3 [27 -41
;
= P((41)
(4)
[s 23]P(xe 3
0
=
; .
*
42p(x(42) 8
/41)
26]P(x
[24 0
= .
;
P(x1/42)
23]
[18 ; 10]P(xg(41) 2
0
=
[F .
P(xc(72) ;
26]
[29 ; 3074(x3/42)
[27 ;
EP(i(na) 1
=
P(xi/45) PiMi) =
P 5
pij >
= -
.
.
P
Y Je
U 5 J W
.
. = .
50/100
Un 50 5 M 100
0 =
= . 11
9
4250
* Y1 42 DISTR
STUDENTESSE
STUDENTI MARS DIX
= =
/41) P(xe (42)
x[18 23]PM Pe
PEn Prz p
p 2 0
; 15 25
1 1
= = 0
0
= +
= =
.
. .
. .
0 1
5
0 2
5
3 15 0
0
0 0
. =
. . =
. .
. . .
26]
2(24 P(xe(41/4 PC
Pan 1 P PA2142) Li
; 22 0 2
x G
P 2 0 + 0
. = =
. =
= =
.
. . . .
25
5 4 j 2
.
0
0
5
0 0 0 0
= .
- =
. .
. . .
30]
[27 P31 P(xg(11)4 3
1
P P3 + 2 0
0
2
1 2 G
x 0
03 =
0 =
; = , = 0
. .
=
. .
. .
.
/
2 5
0
.
0 0
=
. .
.
MAR
IST P
P
D 1 2+
15
1 1 0 2
25 2
0
0 0 0
+ +
= =
+ &
: 0
= P
. .
. . . 5
. . . 1
5 5
0
= +0
. =
5
DI Y .
j 0 .
0 . . & P 25 45 3
0
0 0
= +
+ .
.
.
.
2 I P
Pr
P
Pij Pi i 1 [
0
25
j 15 1 =
0
=
· =
. = =
.
= .
. .
.
im 25
.
0
15 5
0 0
+
= .
.
/0 indi
0 25 sono
15 non
-y
. .
kh Ciis-pis]
y P
ES Pi
PiT
.
3 . J
= .
= .
PiJ
i 15 1
= =
x44442 <
Pr P
x 5 125
0
=
.
. .
25 .
0 0
.
. 125
0 . 225
X2 0 . 25
X3 0 . pit
↑ o
+
T
= 2-13
(3-1
% wie
05
= 0
= ;
.
m
4(k 1
, 13
(2 1
min =
,
www
b3
be
be 7333 22
On 3813 1083
9333
9953 13813 28
on 12333
93398333 25
as 1323775
1 ↓ 1
4 o METODO
1
>
- 20
> METODO
-
3) lo METODO
>
- 20
> METODO
-
i
X
COMPLEMENTARE TRA AED DI
COMP
PROBABILITÀ CONDIZIONATA AL
UMONE
1) -
2 -
3)