x =b Sulldt
x
<
(es
((x) q) a
+
ma
= =
, Verm
116 x
(2,m) 11 :
=
Smidx Vrm2
(b-a)
= :
A a) A
/mattmbys]"
N (b- me
/ABI
g) :
B(b mb +
:
(a marq) +
↑ ,
, IR2 MEIN
rsinzient)
/ranzint
1] 5(t)
[0 +> :
U :
· , ,
, Yx
volte
cirsufi eva
lo
8/t) di vaggir
percome en
anticario
.
in sems Zint)
zimt
5) Zimr) an
Sin
= - , Grant
zimozant Zimr
118'lts1) :
+
= Surdtr
↳=
ton)-I Us sint
Cont +
U : :
· , , ,
it
1
1)11011
Wit) mt
-aut
( =
= , ,
Sardt zie
↳= = -
dicur
gas a
face
f(m)) 1 T
w'(x) 118'G11
(1 2
f
as)
=
= ,
Lo S do
=
·
since x π
Sinusside o
Es y =
.
. Stric
- do
fill Ly
fla) since c
= : :
44
xox = f(x)
y x
= =
· ge de
↳= dx 8/gtdt
=
Be : z
wo
= ,
02
0
O. b
polove g(0) _
g
# an y (0)
x(0)
= 12 2 sind
910)
(91030
5(0) :
02]
[01
=> +
- : ,
, , 90 ;
said
U g(0)
15.10 and
Lind
O-9(0) +
: , -
VIs'mo-said
(gsiotst
11 +
Il +get
gasind-2sitant
co
~ + +
- 'sioseso
- Jo
so
L do
= + carsio
(2)
a(1mo) opoce
so
Ex = ,
esint
gi) = - a mo
- do
(ii)
zad)
= +
+
zamd
a sin
· 2
20
1 =
+
IR" 2t2) parte [0
(t t
U(t)
in
Divegnare 1]
Ex la carra ,
,
= ,
.
- 12
longlezza targete to
with
lo pr :
le e
coloterne
e
F
:
=
110'11
r() ( 47) E T8Y
1
= , ,
:
Ly zYdt =.
W'( 2)
% ) (1 1
: ,
,
( y
42
t x =
= - 7/
2x 2x
+ 1 =
- -
EIR"abouts ((I)
contact
%;
IR" A
di dene
3]
[9
Def 2
U >
-
: , E
f(x
f an)
IR
A + ,
: .., f(x y)
,
differenznes)d'ars
(al
integral de
.
=
(fde at
)
(pde
site (r)
(Parf 1 =
=
/ Sifde paramete
cambia di
combi
per
PL non
. (b)
2" (A)
2(z)
+ = S
If(x() 118'Caces/1 2'(7)
f(x(d())
118'17, 11 de
de I
= .
.
· (a)
-
a d
(3)
2130
S (
unwi
se2 Sical =
: <
= ,
, d
decere 2"
Sil(a)
2Co
a (b)
re =
: = c [c[d]
,
,
I 12 Cus/d
118'C2(1
(0Cac =
·
· [ab] IR"
t
118'% =
Ill
I
Sf(EG) 118'Gill de //
: . Sf()
Iffde I'll
y
EX , = .
Spede
. Creations (f(x,y) x)
=
,
X Cro /
(10) C-raio rand) r
)
112 :
, :
01)
50 2] ,
:
+
8
1) : ,
Grand
Jade (2) >
y
x
-x) + r
=
Vix) (1
I Ul visi
: yz
[0
(2) 3 :
+ ,
,
W =
: , : Exa
/ y :
v'( 11
11 > : dec
:
Jede ro-cr
[] =
r .
: vi
NopN
MR
Grve (Kg/m)
Densira tool
:
5 [0
>
: - , Jd (kg)
Def TotaldiN de
Masa : m .
= (5 cost)
G Ly
omogenes
cass =
: m Jude
.
= S
M
Balicantes
Def di =
e
: G(a z)
y
. , , (m ,
%: Soyde
omgres :
cass = jd zde
z
= See .
x distde
JJ
recor
especto Ir
D'Inezia =
Def Moreo . mu)
(kg .
-
Esercizi Calcolo numerico
-
Calcolo numerico - Esercizi
-
Esercizi Calcolo numerico
-
Calcolo numerico - esercizi vari