Anteprima
Vedrai una selezione di 3 pagine su 6
Project 3, Numerical Analysis Pag. 1 Project 3, Numerical Analysis Pag. 2
Anteprima di 3 pagg. su 6.
Scarica il documento per vederlo tutto.
Project 3, Numerical Analysis Pag. 6
1 su 6
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Accuracy of the LU Factorization

1 Accuracy of the LU Factorization8.   1 0 0 01 0 0 0 1/3 1 0 01/3 1 0 0   L =L = 21   1/2 1 1 01/2 1 1 0   −3/5−3/5 1/4 9/10 11/4 9/10 1   1 1/2 1/3 1/41 1/2 1/3 1/4 0 1/12 4/45 1/120 1/12 4/45 1/12   U =U = 21   −1/180 −1/120−1/180 −1/120 0 00 0   0 0 0 1/28000 0 0 1/2800   1 0 0 01 0 0 0 0 0 1 00 0 1 0   P =P = 21   0 1 0 00 1 0 0   0 0 0 10 0 0 111. %computing the norm (to inf) of the differences between the matrices1 X = L 1-L 2;2 Y = U 1-U 2;3 Z = P 1-P 2;4 normX = norm(X,inf);5 normY = norm(Y,inf);6 normZ = norm(Z,inf);712. −16||X|| ·= 2.220446049250313 10∞ −18||Y || ·= 1.734723475976807 10∞||Z|| = 0∞13. Comparing the value of the norms with the value of machine epsilon we can see that||X|| ||Y ||is equal to ε and is lower. From the mathematical

point of view, since ∞ MA satisfies the hypothesis, we expect the solution to be unique and therefore, the threenorms to be null. From a computational point of view, even if the norms are differentfrom zero, the two values are below the machine precision. Therefore, we can considerthe results null and the theorem for existence and uniqueness of the LU factorization withpivoting numerically satisfied. This statement is also proved by comparing the values ofthe three matrices in rational format, which are exactly the same for each pair.

22 Cost of LU factorization

4.7. * 0*c = 7.442278142268356 100* -2* = 3.782389536262116 10c19.

33 Comparison between direct and iterative methods

2. As we can see from the graph as n increases, the difference in time taken by thetwo functions also drastically increases. For a large number of operations the numericalimplementation becomes crucial to obtain results in the shortest possible time.

5. %LU factorization

with pivoting1 n = zeros(40,1); %initializing variables 2 tel LU user = zeros(40,1); 3 for i=3:42 4 n(i-2) = (i-2)ˆ2; %vector which collects size of every matrix 5 G = delsq(numgrid('S',i)); 6 k = 0.01; 7 A = G+k*eye(n(i-2)); %matrix i 8 x = ones(n(i-2),1); %definition of vector x 9 b = A*x; %definition of vector b 10 tic 11 [L,U,P] = lu factorization with pivoting(A); %factorization 12 y = L\(P*b); %resolution of the 1st linear system 13 x = U\y; %resolution of the 2nd linear system 14 tel LU user(i-2) = toc; 15 end 16 47. %Jacobi method 1 tel J = zeros(40,1); %initializing variables 2 niterJ = zeros(40,1); % n has already been computed 3 for i=3:42 4 G = delsq(numgrid('S',i)); 5 k = 0.01; 6 A = G+k*eye(n(i-2)); %matrix i 7 x = ones(n(i-2),1); %definition of vector x 8 b = A*x; %definition of vector b 9 P = diag(diag(A)); %diagonal of A as preconditioner 10 tic 11 [x,err,niterJ(i-2)] = richardson stat(A,b,P,1,1e-3,50000); %iteration 12 tel J(i-2) = toc; 13 end 14 9. %Gauss-Seidel method 1
tel GS = zeros(40,1); %initializing variables
niterGS = zeros(40,1); %n has already been calculated
for i=3:42
    G = delsq(numgrid('S',i));
    k = 0.01;
    A = G+k*eye(n(i-2)); %matrix i
    x = ones(n(i-2),1); %definition of vector x
    b = A*x; %definition of vector b
    P = tril(A); %triangular lower A as preconditioner
    tic
    [x,err,niterGS(i-2)] = richardson_stat(A,b,P,1,1e-3,50000); %iteration
    tel GS(i-2) = toc;
end
Dettagli
Publisher
A.A. 2021-2022
6 pagine
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher lore210698 di informazioni apprese con la frequenza delle lezioni di Numerical analysis e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Sacco Riccardo.